Display options
Share it on

Neural Regen Res. 2012 Apr 25;7(12):939-42. doi: 10.3969/j.issn.1673-5374.2012.12.010.

A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage.

Neural regeneration research

Sang Seok Yeo, Sung Ho Jang

Affiliations

  1. Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea.

PMID: 25722679 PMCID: PMC4341291 DOI: 10.3969/j.issn.1673-5374.2012.12.010

Abstract

Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.

Keywords: corticospinal tract; diffusion tensor imaging; motor recovery; reorganization

References

  1. Eur Neurol. 2010;63(3):154-8 - PubMed
  2. PLoS One. 2009 Sep 17;4(9):e7082 - PubMed
  3. Ann Neurol. 1996 Apr;39(4):460-70 - PubMed
  4. Restor Neurol Neurosci. 2006;24(1):25-9 - PubMed
  5. Arch Phys Med Rehabil. 1995 May;76(5):406-12 - PubMed
  6. NeuroRehabilitation. 2011;28(4):345-52 - PubMed
  7. J Comput Assist Tomogr. 2008 May-Jun;32(3):418-20 - PubMed
  8. Stroke. 2010 Apr;41(4):745-50 - PubMed
  9. Neuroreport. 1998 Jun 22;9(9):2141-6 - PubMed
  10. Ann Neurol. 1996 Aug;40(2):216-26 - PubMed
  11. Eur Neurol. 1980;19(6):382-9 - PubMed
  12. NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 - PubMed
  13. NeuroRehabilitation. 1998;10(2):131-42 - PubMed
  14. J Magn Reson B. 1996 Jun;111(3):209-19 - PubMed
  15. J Neurosurg. 2003 Jan;98(1):64-73 - PubMed
  16. J Magn Reson Imaging. 2010 Oct;32(4):756-72 - PubMed
  17. Restor Neurol Neurosci. 2004;22(3-5):231-8 - PubMed
  18. Ann Neurol. 1992 May;31(5):463-72 - PubMed
  19. Lancet. 2001 Sep 8;358(9284):787-90 - PubMed
  20. NeuroRehabilitation. 2010;27(4):373-7 - PubMed
  21. NeuroRehabilitation. 2007;22(2):141-5 - PubMed
  22. Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92 - PubMed
  23. Stroke. 2007 Mar;38(3):1088-90 - PubMed
  24. Eur Neurol. 2010;63(3):149-53 - PubMed
  25. Magn Reson Med Sci. 2004 Apr 1;3(1):11-7 - PubMed
  26. Stroke. 2003 Jun;34(6):1553-66 - PubMed
  27. J Rehabil Med. 2012 Mar;44(3):280-4 - PubMed
  28. Curr Opin Neurol. 1998 Dec;11(6):655-62 - PubMed
  29. Stroke. 1983 Jul-Aug;14 (4):493-500 - PubMed
  30. Restor Neurol Neurosci. 2005;23(1):51-6 - PubMed

Publication Types