Display options
Share it on

ACS Nano. 2015 Feb 24;9(2):1886-94. doi: 10.1021/nn506920z. Epub 2015 Jan 23.

Broadband photodetectors based on graphene-Bi2Te3 heterostructure.

ACS nano

Hong Qiao, Jian Yuan, Zaiquan Xu, Caiyun Chen, Shenghuang Lin, Yusheng Wang, Jingchao Song, Yan Liu, Qasim Khan, Hui Ying Hoh, Chun-Xu Pan, Shaojuan Li, Qiaoliang Bao

Affiliations

  1. Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P. R. China.

PMID: 25598406 DOI: 10.1021/nn506920z

Abstract

Recently, research on graphene based photodetectors has drawn substantial attention due to ultrafast and broadband photoresponse of graphene. However, they usually have low responsivity and low photoconductive gain induced by the gapless nature of graphene, which greatly limit their applications. The synergetic integration of graphene with other two-dimensional (2D) materials to form van der Waals heterostructure is a very promising approach to overcome these shortcomings. Here we report the growth of graphene-Bi2Te3 heterostructure where Bi2Te3 is a small bandgap material from topological insulator family with a similar hexagonal symmetry to graphene. Because of the effective photocarrier generation and transfer at the interface between graphene and Bi2Te3, the device photocurrent can be effectively enhanced without sacrificing the detecting spectral width. Our results show that the graphene-Bi2Te3 photodetector has much higher photoresponsivity (35 AW(-1) at a wavelength of 532 nm) and higher sensitivity (photoconductive gain up to 83), as compared to the pure monolayer graphene-based devices. More interestingly, the detection wavelength range of our device is further expanded to near-infrared (980 nm) and telecommunication band (1550 nm), which is not observed on the devices based on heterostructures of graphene and transition metal dichalcogenides.

Keywords: broadband; graphene; heterostructure; photodetector; photoresponsivity; sensitivity

Publication Types