Display options
Share it on

Ann Clin Transl Neurol. 2015 Feb;2(2):140-50. doi: 10.1002/acn3.157. Epub 2014 Dec 17.

Visual pathway neurodegeneration winged by mitochondrial dysfunction.

Annals of clinical and translational neurology

Axel Petzold, Philip G Nijland, Lisanne J Balk, Angela Maria Amorini, Giacomo Lazzarino, Mike P Wattjes, Claudio Gasperini, Paul van der Valk, Barbara Tavazzi, Giuseppe Lazzarino, Jack van Horssen

Affiliations

  1. Department of Neurology, VU University Medical Center De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands ; Department of Ophthalmology, VU University Medical Center De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands ; Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom ; Moorfields Eye Hospital, Neuro-ophthalmology City Road, London, UK.
  2. Department of Pathology, VU University Medical Center Amsterdam, The Netherlands.
  3. Department of Neurology, VU University Medical Center De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
  4. Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome Largo F. Vito 1, 00168, Rome, Italy.
  5. Department of Radiology & Nuclear Medicine, VU University Medical Center Amsterdam, The Netherlands.
  6. Department of Neurosciences, S Camillo Forlanini Hospital Circonvallazione Gianicolense 87, 00152, Rome, Italy.
  7. Division of Biochemistry and Molecular Biology, Department of Biology, Geology and Environmental Sciences, University of Catania Viale A. Doria 6, 95125, Catania, Italy.
  8. Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, The Netherlands.

PMID: 25750919 PMCID: PMC4338955 DOI: 10.1002/acn3.157

Abstract

OBJECTIVES: To test for structural and functional contribution of mitochondrial dysfunction to neurodegeneration in multiple sclerosis (MS). A visual pathway model void of MS lesions was chosen in order to exclude neurodegeneration secondary to lesion related axonotmesis.

METHODS: A single-centre cohort study (230 MS patients, 63 controls). Spectral domain optical coherence tomography of the retina, 3T magnetic resonance imaging of the brain, spectrophotometric assessment of serum lactate levels. Postmortem immunohistochemistry.

RESULTS: The visual pathway was void of MS lesions in 31 patients and 31 age-matched controls. Serum lactate was higher in MS compared to controls (P = 0.029). High serum lactate was structurally related to atrophy of the retinal nerve fiber layer at the optic disc (P = 0.041), macula (P = 0.025), and the macular ganglion cell complex (P = 0.041). High serum lactate was functionally related to poor color vision (P < 0.01), Expanded Disability Status Scale score (R = 0.37, P = 0.041), Guy's Neurological disability score (R = 0.38, P = 0.037), MS walking scale (R = 0.50, P = 0.009), upper limb motor function (R = 0.53, P = 0.002). Immunohistochemistry demonstrated increased astrocytic expression of a key lactate generating enzyme in MS lesions as well as profound vascular expression of monocarboxylate transporter-1, which is involved in lactate transport.

INTERPRETATION: This study provides structural, functional, and translational evidence for visual pathway neurodegeneration in MS related to mitochondrial dysfunction.

References

  1. Clin Exp Ophthalmol. 2013 Sep-Oct;41(7):702-12 - PubMed
  2. Acta Neuropathol. 2013 Feb;125(2):231-43 - PubMed
  3. J Neurol Neurosurg Psychiatry. 2015 Apr;86(4):419-24 - PubMed
  4. J Opt Soc Am A Opt Image Sci Vis. 2012 Feb 1;29(2):A27-35 - PubMed
  5. PLoS One. 2011 Apr 06;6(4):e18019 - PubMed
  6. J Neurol Neurosurg Psychiatry. 2010 Sep;81(9):985-91 - PubMed
  7. Ann Neurol. 2014 Jan;75(1):98-107 - PubMed
  8. Mol Vis. 2003 Mar 11;9:60-73 - PubMed
  9. Nat Rev Neurol. 2012 Nov 5;8(11):647-56 - PubMed
  10. Mult Scler. 2014 Aug;20(9):1198-206 - PubMed
  11. Glia. 2014 Jul;62(7):1125-41 - PubMed
  12. J Magn Reson Imaging. 2002 Mar;15(3):259-67 - PubMed
  13. Nat Rev Neurol. 2014 Apr;10(4):225-38 - PubMed
  14. Ann Neurol. 2001 Jul;50(1):121-7 - PubMed
  15. Neurology. 1996 Apr;46(4):907-11 - PubMed
  16. Ann Clin Transl Neurol. 2014 Aug;1(8):589-604 - PubMed
  17. J Neurol. 2013 Dec;260(12):3109-14 - PubMed
  18. Neurology. 2003 Nov 25;61(10):1367-73 - PubMed
  19. J Neuroophthalmol. 2014 Sep;34 Suppl:S3-9 - PubMed
  20. Mult Scler. 2015 Feb;21(2):163-70 - PubMed
  21. Invest Ophthalmol Vis Sci. 1984 Jan;25(1):19-29 - PubMed
  22. Neurodegener Dis Manag. 2014;4(2):165-76 - PubMed
  23. Eur Radiol. 2015 Jan;25(1):122-31 - PubMed
  24. Invest Ophthalmol Vis Sci. 2013 Apr 30;54(4):3045 - PubMed
  25. Invest Ophthalmol Vis Sci. 1988 Jan;29(1):50-63 - PubMed
  26. Invest Ophthalmol Vis Sci. 2012 Mar 09;53(3):1251-7 - PubMed
  27. J Vis Exp. 2014 Apr 14;(86):null - PubMed
  28. Trends Mol Med. 2014 Mar;20(3):179-87 - PubMed
  29. Mult Scler. 2013 Dec;19(14):1887-95 - PubMed
  30. Brain. 2001 Sep;124(Pt 9):1813-20 - PubMed
  31. Eur J Phys Rehabil Med. 2015 Apr;51(2):223-31 - PubMed
  32. Brain. 2009 Mar;132(Pt 3):628-34 - PubMed
  33. Am J Clin Pathol. 2000 Jul;114(1):139-43 - PubMed
  34. Arch Neurol. 2009 Nov;66(11):1373-7 - PubMed
  35. J Neurol. 2008 Jan;255(1):56-63 - PubMed
  36. CNS Drugs. 2013 Oct;27(10):799-815 - PubMed
  37. Br J Ophthalmol. 1967 Oct;51(10):698-702 - PubMed
  38. Aviat Space Environ Med. 2012 Jan;83(1):19-29 - PubMed
  39. Biochim Biophys Acta. 2014 Jul;1842(7):1137-43 - PubMed
  40. Clin Ophthalmol. 2010 Sep 20;4:1007-13 - PubMed
  41. Brain. 1990 Oct;113 ( Pt 5):1441-57 - PubMed
  42. Neurology. 2014 Jun 17;82(24):2165-72 - PubMed
  43. Neurology. 2014 May 27;82(21):1888-96 - PubMed
  44. Lancet Neurol. 2010 Sep;9(9):921-32 - PubMed
  45. J Neurol Neurosurg Psychiatry. 2014 Jul;85(7):782-9 - PubMed
  46. PLoS One. 2012;7(8):e43675 - PubMed
  47. N Engl J Med. 1998 Jan 29;338(5):278-85 - PubMed
  48. Ophthalmic Surg Lasers Imaging. 2011 Jul;42 Suppl:S28-40 - PubMed
  49. Brain. 2011 Feb;134(Pt 2):518-33 - PubMed
  50. Nat Rev Neurol. 2014 Aug;10(8):447-58 - PubMed
  51. Mult Scler. 2013 Apr;19(4):443-50 - PubMed

Publication Types