Display options
Share it on

Int J Microbiol. 2014;2014:456979. doi: 10.1155/2014/456979. Epub 2014 Dec 21.

Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains.

International journal of microbiology

Miseon Park, Fatemeh Rafii

Affiliations

  1. Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR 72079, USA.

PMID: 25587280 PMCID: PMC4283427 DOI: 10.1155/2014/456979

Abstract

Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.

References

  1. J Clin Microbiol. 2005 Aug;43(8):4218-20 - PubMed
  2. Microb Drug Resist. 2012 Feb;18(1):94-9 - PubMed
  3. Genome Res. 2006 Aug;16(8):1031-40 - PubMed
  4. Microb Drug Resist. 2002 Fall;8(3):227-34 - PubMed
  5. Ann N Y Acad Sci. 2007 Oct;1113:95-104 - PubMed
  6. Peptides. 1995;16(1):151-64 - PubMed
  7. Anaerobe. 2009 Aug;15(4):116-21 - PubMed
  8. Emerg Infect Dis. 2011 Jan;17(1):7-15 - PubMed
  9. Pathol Biol (Paris). 2012 Oct;60(5):270-4 - PubMed
  10. Arch Microbiol. 2009 Dec;191(12):895-902 - PubMed
  11. MBio. 2013 Jul 23;4(4):null - PubMed
  12. FEMS Microbiol Rev. 2009 Jan;33(1):191-205 - PubMed
  13. Antimicrob Agents Chemother. 2008 Mar;52(3):895-900 - PubMed
  14. Clin Infect Dis. 1996 Dec;23 Suppl 1:S2-8 - PubMed
  15. Antimicrob Agents Chemother. 2012 May;56(5):2364-70 - PubMed
  16. J Bacteriol. 2013 Feb;195(3):510-22 - PubMed
  17. BMC Microbiol. 2013 Mar 01;13:50 - PubMed
  18. Antimicrob Agents Chemother. 2005 Feb;49(2):488-92 - PubMed
  19. Anaerobe. 2011 Aug;17(4):166-9 - PubMed
  20. J Chemother. 2011 Jun;23(3):145-9 - PubMed
  21. Emerg Infect Dis. 2003 Nov;9(11):1415-22 - PubMed
  22. Antimicrob Agents Chemother. 1992 Jan;36(1):239-43 - PubMed
  23. J Antimicrob Chemother. 2005 Jan;55(1):22-30 - PubMed
  24. Anaerobe. 2014 Aug;28:90-4 - PubMed
  25. Microb Drug Resist. 2013 Dec;19(6):421-7 - PubMed
  26. J Med Microbiol. 2013 May;62(Pt 5):741-7 - PubMed
  27. Biochim Biophys Acta. 2005 Nov 30;1717(2):67-88 - PubMed
  28. Res Microbiol. 2009 Dec;160(10):785-91 - PubMed
  29. J Pept Sci. 2014 Mar;20(3):173-85 - PubMed
  30. Clin Microbiol Rev. 2013 Jul;26(3):526-46 - PubMed

Publication Types