Display options
Share it on

Stem Cells Int. 2014;2014:316214. doi: 10.1155/2014/316214. Epub 2014 Dec 18.

Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model.

Stem cells international

Cheuk-Kwan Sun, Yen-Yi Zhen, Hung-I Lu, Pei-Hsun Sung, Li-Teh Chang, Tzu-Hsien Tsai, Jiunn-Jye Sheu, Yung-Lung Chen, Sarah Chua, Hsueh-Wen Chang, Yi-Ling Chen, Fan-Yen Lee, Hon-Kan Yip

Affiliations

  1. Department of Emergency Medicine, E-Da Hospital, I-Shou University College of Medicine, Kaohsiung 82445, Taiwan.
  2. Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
  3. Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
  4. Basic Science, Nursing Department, Meiho Institute of Technology, Pingtung 91202, Taiwan.
  5. Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
  6. Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan ; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan ; Institute of Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.

PMID: 25587286 PMCID: PMC4281407 DOI: 10.1155/2014/316214

Abstract

We tested the hypothesis that Lipofectamine siRNA delivery to deplete transient receptor potential cation channel (TRPC) 1 protein expression can suppress hypoxia-induced pulmonary arterial hypertension (PAH) in mice. Adult male C57BL/6 mice were equally divided into group 1 (normal controls), group 2 (hypoxia), and group 3 (hypoxia + siRNA TRPC1). By day 28, right ventricular systolic pressure (RVSP), number of muscularized arteries, right ventricle (RV), and lung weights were increased in group 2 than in group 1 and reduced in group 3 compared with group 2. Pulmonary crowded score showed similar pattern, whereas number of alveolar sacs exhibited an opposite pattern compared to that of RVSP in all groups. Protein expressions of TRPCs, HIF-1α, Ku-70, apoptosis, and fibrosis and pulmonary mRNA expressions of inflammatory markers were similar pattern, whereas protein expressions of antifibrosis and VEGF were opposite to the pattern of RVSP. Cellular markers of pulmonary DNA damage, repair, and smooth muscle proliferation exhibited a pattern similar to that of RVSP. The mRNA expressions of proapoptotic and hypertrophy biomarkers displayed a similar pattern, whereas sarcomere length showed an opposite pattern compared to that of RVSP in all groups. Lipofectamine siRNA delivery effectively reduced TRPC1 expression, thereby attenuating PAH-associated RV and pulmonary arteriolar remodeling.

References

  1. J Transl Med. 2011 Jul 22;9:118 - PubMed
  2. Genes Dev. 2003 Aug 15;17(16):1937-56 - PubMed
  3. Lancet. 2003 May 3;361(9368):1533-44 - PubMed
  4. J Transl Med. 2012 Aug 16;10:164 - PubMed
  5. Lancet. 1998 Aug 29;352(9129):719-25 - PubMed
  6. N Engl J Med. 2005 Nov 17;353(20):2148-57 - PubMed
  7. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13861-6 - PubMed
  8. Circulation. 1998 Dec 1;98 (22):2441-5 - PubMed
  9. J Pharmacol Exp Ther. 1996 Dec;279(3):1462-9 - PubMed
  10. J Clin Oncol. 1998 Jun;16(6):2221-32 - PubMed
  11. N Engl J Med. 1997 Jan 9;336(2):111-7 - PubMed
  12. Annu Rev Biochem. 2007;76:387-417 - PubMed
  13. J Clin Invest. 1987 Mar;79(3):970-7 - PubMed
  14. J Cardiovasc Pharmacol. 2010 Jun;55(6):574-84 - PubMed
  15. Circulation. 1999 Mar 9;99(9):1197-208 - PubMed
  16. FASEB J. 2001 Feb;15(2):427-38 - PubMed
  17. Neuron. 1989 Apr;2(4):1313-23 - PubMed
  18. Chest. 2011 Nov;140(5):1274-83 - PubMed
  19. Clin Cancer Res. 2006 Jul 1;12(13):4055-61 - PubMed
  20. Ann Intern Med. 2000 Mar 21;132(6):425-34 - PubMed
  21. Front Biosci (Landmark Ed). 2010 Jun 01;15:1023-39 - PubMed
  22. J Clin Invest. 2007 Dec;117(12):3623-32 - PubMed
  23. Circ Res. 2004 Sep 3;95(5):496-505 - PubMed
  24. Lancet. 2001 Oct 6;358(9288):1119-23 - PubMed
  25. Adv Drug Deliv Rev. 2006 Jul 7;58(4):467-86 - PubMed
  26. Circ Res. 2006 Jul 21;99(2):119-31 - PubMed
  27. Circulation. 1989 Nov;80(5):1198-206 - PubMed
  28. Nat Med. 2006 Mar;12(3):342-7 - PubMed
  29. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D34-41 - PubMed
  30. Crit Care Med. 2008 Mar;36(3):873-80 - PubMed
  31. Trends Mol Med. 2009 Nov;15(11):491-500 - PubMed
  32. Mol Ther. 2006 Jun;13(6):1156-62 - PubMed
  33. N Engl J Med. 2002 Mar 21;346(12):896-903 - PubMed
  34. Eur Respir J. 1999 Dec;14(6):1246-50 - PubMed
  35. N Engl J Med. 1996 Feb 1;334(5):296-301 - PubMed
  36. J Transl Med. 2013 Oct 25;11:270 - PubMed
  37. Circulation. 2001 Oct 30;104(18):2242-8 - PubMed
  38. Med Res Rev. 2004 Nov;24(6):748-61 - PubMed
  39. Circ Res. 2006 Jun 23;98 (12 ):1528-37 - PubMed
  40. Am J Med. 1993 Apr;94(4):419-23 - PubMed
  41. Nat Rev Genet. 2003 May;4(5):346-58 - PubMed
  42. J Pharmacol Exp Ther. 2009 Sep;330(3):718-26 - PubMed
  43. Ann Intern Med. 1991 Sep 1;115(5):343-9 - PubMed

Publication Types