Display options
Share it on

Behav Ecol Sociobiol. 2014 May;68(5):761-771. doi: 10.1007/s00265-014-1689-8.

Individual responsiveness to shock and colony-level aggression in honey bees: evidence for a genetic component.

Behavioral ecology and sociobiology

Arian Avalos, Yoselyn Rodríguez-Cruz, Tugrul Giray

Affiliations

  1. Department of Biology, University of Puerto Rico, Rio Piedras, P.O. Box 23360, San Juan 00931, Puerto Rico.

PMID: 25729126 PMCID: PMC4339078 DOI: 10.1007/s00265-014-1689-8

Abstract

The phenotype of the social group is related to phenotypes of individuals that form that society. We examined how honey bee colony aggressiveness relates to individual response of male drones and foraging workers. Although the natural focus in colony aggression has been on the worker caste, the sterile females engaged in colony maintenance and defense, males carry the same genes. We measured aggressiveness scores of colonies and examined components of individual aggressive behavior in workers and haploid sons of workers from the same colony. We describe for the first time, that males, although they have no stinger, do bend their abdomen (abdominal flexion) in a posture similar to stinging behavior of workers in response to electric shock. Individual worker sting response and movement rates in response to shock were significantly correlated with colony scores. In the case of drones, sons of workers from the same colonies, abdominal flexion significantly correlated but their movement rates did not correlate with colony aggressiveness. Furthermore, the number of workers responding at increasing levels of voltage exhibits a threshold-like response, whereas the drones respond in increasing proportion to shock. We conclude that there are common and caste-specific components to aggressive behavior in honey bees. We discuss implications of these results on social and behavioral regulation and genetics of aggressive response.

Keywords: Abdomen Flexion; Aggression; Drone; Honey bee; Shock; Sting

References

  1. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1648-50 - PubMed
  2. Genome Res. 2002 Apr;12(4):555-66 - PubMed
  3. Behav Genet. 2002 Mar;32(2):95-102 - PubMed
  4. Cell. 2003 Aug 22;114(4):419-29 - PubMed
  5. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12808-13 - PubMed
  6. Toxicon. 2003 Nov;42(6):673-82 - PubMed
  7. Annu Rev Entomol. 2004;49:271-98 - PubMed
  8. Annu Rev Entomol. 2004;49:351-76 - PubMed
  9. J Evol Biol. 2004 Jul;17(4):869-75 - PubMed
  10. J Hered. 2005 Jul-Aug;96(4):376-80 - PubMed
  11. Nat Rev Genet. 2005 Apr;6(4):257-70 - PubMed
  12. Naturwissenschaften. 2007 Apr;94(4):247-67 - PubMed
  13. PLoS One. 2007 Mar 14;2(3):e288 - PubMed
  14. J Insect Physiol. 2007 May;53(5):399-410 - PubMed
  15. J Chem Ecol. 2007 Jul;33(7):1346-50 - PubMed
  16. PLoS One. 2009;4(1):e4197 - PubMed
  17. Front Behav Neurosci. 2010 Aug 30;4:null - PubMed
  18. J Insect Physiol. 2011 Oct;57(10):1358-67 - PubMed
  19. PLoS One. 2011;6(9):e25371 - PubMed
  20. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1182-6 - PubMed
  21. Evol Appl. 2012 Nov;5(7):746-56 - PubMed
  22. Toxicon. 2013 Mar 1;63:120-8 - PubMed
  23. Neurosci Bull. 2013 Jun;29(3):270-8 - PubMed
  24. J Insect Sci. 2012;12:122 - PubMed
  25. J Exp Biol. 2013 Aug 15;216(Pt 16):2985-97 - PubMed
  26. BMC Genet. 2013 Aug 06;14:65 - PubMed
  27. BMC Genomics. 2013 Sep 30;14:666 - PubMed
  28. J Exp Biol. 2013 Nov 1;216(Pt 21):4124-34 - PubMed
  29. Evolution. 1979 Sep;33(3):941-957 - PubMed
  30. Pharmacol Biochem Behav. 1983 Dec;19(16):921-4 - PubMed
  31. Biol Rev Camb Philos Soc. 1996 Feb;71(1):27-79 - PubMed
  32. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11718-22 - PubMed
  33. J Exp Biol. 1995;198(Pt 1):39-47 - PubMed
  34. Neurosci Lett. 1997 Nov 7;236(3):135-8 - PubMed
  35. Genetics. 1998 Mar;148(3):1203-13 - PubMed

Publication Types

Grant support