Display options
Share it on

Front Genet. 2015 Feb 12;6:14. doi: 10.3389/fgene.2015.00014. eCollection 2015.

Toxicogenomics profiling of bone marrow from rats treated with topotecan in combination with oxaliplatin: a mechanistic strategy to inform combination toxicity.

Frontiers in genetics

Myrtle Davis, Jianying Li, Elaine Knight, Sandy R Eldridge, Kellye K Daniels, Pierre R Bushel

Affiliations

  1. Toxicology and Pharmacology Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute Bethesda, MD, USA.
  2. Kelly Government Solutions, Research Triangle Park NC, USA ; Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park NC, USA.
  3. Toxicology and Pathology Services, Southern Research Institute Birmingham, AL, USA.
  4. Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park NC, USA ; Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park NC, USA.

PMID: 25729387 PMCID: PMC4325931 DOI: 10.3389/fgene.2015.00014

Abstract

Combinations of anticancer agents may have synergistic anti-tumor effects, but enhanced hematological toxicity often limit their clinical use. We examined whether "microarray profiles" could be used to compare early molecular responses following a single dose of agents administered individually with that of the agents administered in a combination. We compared the mRNA responses within bone marrow of Sprague-Dawley rats after a single 30 min treatment with topotecan at 4.7 mg/kg or oxaliplatin at 15 mg/kg alone to that of sequentially administered combination therapy or vehicle control for 1, 6, and 24 h. We also examined the histopathology of the bone marrow following all treatments. Drug-related histopathological lesions were limited to bone marrow hypocellularity for animals dosed with either agent alone or in combination. Lesions had an earlier onset and higher incidence for animals given topotecan alone or in combination with oxaliplatin. Severity increased from mild to moderate when topotecan was administered prior to oxaliplatin compared with administering oxaliplatin first. Notably, six patterns of co-expressed genes were detected at the 1 h time point that indicate regulatory expression of genes that are dependent on the order of the administration. These results suggest alterations in histone biology, chromatin remodeling, DNA repair, bone regeneration, and respiratory and oxidative phosphorylation are among the prominent pathways modulated in bone marrow from animals treated with an oxaliplatin/topotecan combination. These data also demonstrate the potential for early mRNA patterns derived from target organs of toxicity to inform toxicological risk and molecular mechanisms for agents given in combination.

Keywords: EPIG; bone marrow; combination; enhanced toxicity; oxaliplatin; topotecan; toxicogenomics

References

  1. Nephron. 1996;72(4):579-86 - PubMed
  2. Toxicol Appl Pharmacol. 2011 Apr 15;252(2):112-22 - PubMed
  3. Nucleic Acids Res. 2011 Jul;39(13):e86 - PubMed
  4. Biochemistry. 2001 Sep 25;40(38):11630-42 - PubMed
  5. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  6. Anticancer Drugs. 1999 Feb;10(2):195-201 - PubMed
  7. Gynecol Oncol. 2007 Feb;104(2):422-7 - PubMed
  8. Exp Hematol. 2011 May;39(5):546-557.e8 - PubMed
  9. Histol Histopathol. 1999 Oct;14(4):1199-212 - PubMed
  10. Semin Cell Dev Biol. 1999 Oct;10(5):455-64 - PubMed
  11. Mol Carcinog. 1999 Mar;24(3):153-9 - PubMed
  12. Pharm Res. 2004 Apr;21(4):567-73 - PubMed
  13. Pharmacogenomics J. 2010 Aug;10 (4):267-77 - PubMed
  14. Nucleic Acids Res. 2008 Jan;36(Database issue):D892-900 - PubMed
  15. Bioinformatics. 2006 Oct 1;22(19):2413-20 - PubMed
  16. J Clin Oncol. 2000 May;18(10):2104-15 - PubMed
  17. J Cell Sci. 2011 Oct 15;124(Pt 20):3428-40 - PubMed
  18. Toxicol Appl Pharmacol. 2005 Sep 1;207(2 Suppl):161-70 - PubMed
  19. J Biotechnol. 2005 Sep 29;119(3):219-44 - PubMed
  20. J Cell Commun Signal. 2009 Dec;3(3-4):287-310 - PubMed
  21. BMC Bioinformatics. 2008 Sep 25;9:399 - PubMed
  22. Ann Oncol. 2002 Mar;13(3):392-8 - PubMed
  23. Matrix Biol. 1998 Feb;16(7):379-86 - PubMed
  24. Am J Clin Oncol. 2002 Apr;25(2):198-203 - PubMed
  25. J Clin Oncol. 2002 Dec 15;20(24):4713-21 - PubMed
  26. Chem Res Toxicol. 2010 Jun 21;23(6):1025-33 - PubMed
  27. Adv Protein Chem. 2005;70:203-46 - PubMed
  28. Curr Opin Pharmacol. 2008 Oct;8(5):654-60 - PubMed
  29. Cell Motil Cytoskeleton. 1997;38(3):250-7 - PubMed
  30. Anticancer Drugs. 2012 Aug;23(7):724-30 - PubMed
  31. Oxid Med Cell Longev. 2011;2011:824597 - PubMed
  32. Curr Genomics. 2007 Jun;8(4):262-70 - PubMed
  33. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 - PubMed
  34. Anticancer Drugs. 2009 Oct;20(9):770-8 - PubMed
  35. J Pathol. 2003 Jul;200(4):488-99 - PubMed
  36. Curr Biol. 2000 Dec 14-28;10(24):R912-5 - PubMed
  37. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18211-6 - PubMed
  38. Nucleic Acids Res. 2012 Jan;40(Database issue):D1301-7 - PubMed
  39. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 - PubMed
  40. PLoS One. 2010 Oct 01;5(10):null - PubMed
  41. Toxicol Appl Pharmacol. 2011 Apr 15;252(2):97-111 - PubMed
  42. BMC Bioinformatics. 2007 Nov 02;8:427 - PubMed
  43. Eur Cell Mater. 2012 May 04;23 :320-32 - PubMed
  44. Toxicol Pathol. 2003 Sep-Oct;31(5):471-9 - PubMed
  45. BMC Genomics. 2008 Feb 26;9:99 - PubMed
  46. Pharmacogenomics. 2008 Jan;9(1):35-54 - PubMed
  47. Nucleic Acids Res. 2003 Feb 15;31(4):e15 - PubMed
  48. Blood. 2009 Apr 9;113(15):3577-84 - PubMed
  49. Nat Rev Drug Discov. 2010 Nov;9(11):843-56 - PubMed
  50. Biostatistics. 2003 Apr;4(2):249-64 - PubMed

Publication Types