Display options
Share it on

Front Microbiol. 2015 Jan 23;6:12. doi: 10.3389/fmicb.2015.00012. eCollection 2015.

Comparative phenotypic and genotypic virulence of Salmonella strains isolated from Australian layer farms.

Frontiers in microbiology

Andrea R McWhorter, Kapil K Chousalkar

Affiliations

  1. School of Animal and Veterinary Sciences, University of Adelaide - Roseworthy Campus Roseworthy, SA, Australia.

PMID: 25667583 PMCID: PMC4304256 DOI: 10.3389/fmicb.2015.00012

Abstract

There are over 2500 Salmonella enterica serovars that circulate globally. Of these, serovars those classified into subspecies I are the most common cause of human salmonellosis. Many subspecies I Salmonella serovars are routinely isolated from egg farm environments but are not frequently associated with causing disease in humans. In this study, virulence profiles were generated for 10 strains of Salmonella enterica isolated directly from egg farm environments to investigate their potential public health risk. Three virulence parameters were assessed including in vitro invasion, in vivo pathogenicity and characterization of genomic variation within five specific pathogenicity islands. These 10 Salmonella strains exhibited significant differences in invasion into the human intestinal epithelial cell line, Caco2. Low, moderate, and high invasion patterns were observed and the degree of invasion was dependent on bacterial growth in a nutritive environment. Interestingly, two Salmonella strains, S. Adelaide and S. Bredeney had consistently low invasion. The S. Typhimurium definitive types and S. Virchow exhibited the greatest cell invasion following growth in Luria Bertani broth. Only the S. Typhimurium strains caused disease in BALB/c mice, yet the majority of serovars were consistently detected in feces over the 21 day experiment. Genomic comparison of the five specific pathogenicity islands has shown that variation in virulence is likely multifactorial. Sequence variability was observed primarily in strains with low virulence. In particular, genes involved in forming the structures of the SPI-1 and SPI-2 type 3 secretion systems as well as multiple effector proteins were among the most variable. This variability suggest that serovars with low virulence are likely to have both invasion and within host replication defects that ultimately limit their pathogenicity.

Keywords: BALB/c mice; Caco2; Salmonella; Salmonella pathogenicity islands; cell invasion; eggs

References

  1. Microbiology. 2012 May;158(Pt 5):1147-61 - PubMed
  2. Foodborne Pathog Dis. 2010 Nov;7(11):1351-61 - PubMed
  3. Cell Microbiol. 2012 Jan;14(1):28-39 - PubMed
  4. Microb Ecol. 2011 Oct;62(3):487-504 - PubMed
  5. J Infect Dis. 2008 Jul 1;198(1):109-14 - PubMed
  6. EMBO J. 2005 Jun 1;24(11):2043-52 - PubMed
  7. Cell Host Microbe. 2008 Apr 17;3(4):233-44 - PubMed
  8. Mol Microbiol. 1998 Jan;27(2):359-68 - PubMed
  9. Microb Pathog. 1994 Dec;17(6):409-23 - PubMed
  10. Br Poult Sci. 2006 Oct;47(5):554-60 - PubMed
  11. Cell Microbiol. 2014 Feb;16(2):161-78 - PubMed
  12. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9887-92 - PubMed
  13. Infect Immun. 2012 Feb;80(2):839-49 - PubMed
  14. Mol Microbiol. 2002 Mar;43(5):1089-103 - PubMed
  15. Infect Immun. 1998 Jul;66(7):3365-71 - PubMed
  16. Nature. 2001 Oct 25;413(6858):852-6 - PubMed
  17. Foodborne Pathog Dis. 2011 Aug;8(8):887-900 - PubMed
  18. Emerg Infect Dis. 2013 Aug;19(8):1239-44 - PubMed
  19. Commun Dis Intell Q Rep. 2012 Sep 30;36(3):E213-41 - PubMed
  20. FEMS Microbiol Lett. 2007 Oct;275(1):153-9 - PubMed
  21. J Mol Biol. 2014 Aug 12;426(16):2958-69 - PubMed
  22. Curr Opin Microbiol. 2007 Feb;10(1):24-9 - PubMed
  23. Immunity. 2013 Dec 12;39(6):1108-20 - PubMed
  24. Infect Immun. 2008 Mar;76(3):1024-35 - PubMed
  25. Genome Res. 2008 Oct;18(10):1624-37 - PubMed
  26. Infect Immun. 2010 Aug;78(8):3493-505 - PubMed
  27. Arch Microbiol. 2011 Nov;193(11):811-21 - PubMed
  28. Can J Vet Res. 2013 Jan;77(1):12-23 - PubMed
  29. J Bacteriol. 2001 Oct;183(20):6036-45 - PubMed
  30. Mol Microbiol. 1998 Aug;29(3):883-91 - PubMed
  31. Appl Environ Microbiol. 2011 Jul;77(13):4273-9 - PubMed
  32. Avian Dis. 1994 Apr-Jun;38(2):282-8 - PubMed
  33. Avian Pathol. 2011 Oct;40(5):429-36 - PubMed
  34. Cell Mol Life Sci. 2004 Nov;61(22):2812-26 - PubMed
  35. Sci Rep. 2013 Nov 28;3:3369 - PubMed
  36. Cell Microbiol. 2007 Jul;9(7):1834-50 - PubMed
  37. Epidemiol Infect. 1994 Dec;113(3):403-9 - PubMed
  38. PLoS One. 2013;8(3):e58449 - PubMed
  39. Int J Food Microbiol. 2014 Oct 17;189:61-6 - PubMed
  40. J Immunol. 2004 Sep 15;173(6):4091-9 - PubMed
  41. Avian Pathol. 2012 Oct;41(5):421-7 - PubMed
  42. Res Microbiol. 2010 Jan-Feb;161(1):26-9 - PubMed
  43. Cell Microbiol. 2008 Nov;10(11):2364-76 - PubMed
  44. Poult Sci. 2013 Feb;92(2):468-73 - PubMed
  45. Microbiology. 2003 May;149(Pt 5):1103-11 - PubMed
  46. PLoS One. 2012;7(4):e36043 - PubMed
  47. PLoS Pathog. 2012;8(12):e1003070 - PubMed
  48. J Bacteriol. 2001 Feb;183(4):1452-4 - PubMed
  49. Microbiology. 2010 Apr;156(Pt 4):1120-33 - PubMed
  50. J Infect Dis. 1976 Jan;133(1):72-8 - PubMed
  51. Clin Microbiol Rev. 2013 Apr;26(2):308-41 - PubMed
  52. Infect Immun. 2001 Feb;69(2):737-43 - PubMed
  53. Int J Food Microbiol. 2014 Jul 16;182-183:18-25 - PubMed

Publication Types