Display options
Share it on

Front Microbiol. 2015 Jan 23;6:17. doi: 10.3389/fmicb.2015.00017. eCollection 2015.

Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor.

Frontiers in microbiology

Tan T Nguyen, Bjarne Landfald

Affiliations

  1. Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway Tromsø, Norway.
  2. Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway Tromsø, Norway.

PMID: 25667586 PMCID: PMC4304239 DOI: 10.3389/fmicb.2015.00017

Abstract

Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.

Keywords: 16S rRNA gene; Barents Sea; archaea; bacteria; beta-diversity; sediment

References

  1. Appl Environ Microbiol. 2001 Jan;67(1):387-95 - PubMed
  2. Appl Environ Microbiol. 2003 May;69(5):2463-83 - PubMed
  3. Appl Environ Microbiol. 2003 Dec;69(12):7224-35 - PubMed
  4. Appl Environ Microbiol. 2004 Feb;70(2):781-9 - PubMed
  5. Nature. 2004 Dec 9;432(7018):750-3 - PubMed
  6. Appl Environ Microbiol. 2005 Jan;71(1):467-79 - PubMed
  7. Nature. 2005 Sep 22;437(7058):543-6 - PubMed
  8. Nat Rev Microbiol. 2006 Feb;4(2):102-12 - PubMed
  9. Environ Microbiol. 2006 Apr;8(4):732-40 - PubMed
  10. Trends Microbiol. 2006 Jun;14(6):257-63 - PubMed
  11. Appl Environ Microbiol. 2006 Jul;72(7):4931-41 - PubMed
  12. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  13. BMC Bioinformatics. 2006 Aug 07;7:371 - PubMed
  14. FEMS Microbiol Ecol. 2007 Sep;61(3):496-508 - PubMed
  15. Genome Biol. 2007;8(7):R143 - PubMed
  16. Nat Rev Microbiol. 2007 Oct;5(10):770-81 - PubMed
  17. FEMS Microbiol Ecol. 2007 Dec;62(3):242-57 - PubMed
  18. Nat Rev Microbiol. 2008 Mar;6(3):245-52 - PubMed
  19. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7774-8 - PubMed
  20. Nucleic Acids Res. 2009 Jan;37(Database issue):D489-93 - PubMed
  21. Extremophiles. 2009 Mar;13(2):233-46 - PubMed
  22. ISME J. 2009 Jul;3(7):860-9 - PubMed
  23. ISME J. 2009 Jul;3(7):780-91 - PubMed
  24. Nat Rev Microbiol. 2009 Jun;7(6):451-9 - PubMed
  25. ISME J. 2009 Nov;3(11):1269-85 - PubMed
  26. Appl Environ Microbiol. 2009 Aug;75(16):5227-36 - PubMed
  27. Environ Microbiol. 2009 Dec;11(12):3132-9 - PubMed
  28. Environ Microbiol. 2010 Jan;12(1):118-23 - PubMed
  29. ISME J. 2010 Feb;4(2):159-70 - PubMed
  30. Bioinformatics. 2010 Jan 15;26(2):266-7 - PubMed
  31. Environ Microbiol. 2010 Jul;12(7):1889-98 - PubMed
  32. Nat Methods. 2010 May;7(5):335-6 - PubMed
  33. FEMS Microbiol Ecol. 2010 Jun;72(3):370-85 - PubMed
  34. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  35. FEMS Microbiol Ecol. 2010 Nov;74(2):410-29 - PubMed
  36. Nat Methods. 2010 Sep;7(9):668-9 - PubMed
  37. Adv Microb Physiol. 2010;57:1-41 - PubMed
  38. ISME J. 2011 May;5(5):879-95 - PubMed
  39. Mol Ecol. 2011 Jan;20(2):258-74 - PubMed
  40. Genome Res. 2011 Mar;21(3):494-504 - PubMed
  41. Appl Environ Microbiol. 2011 Mar;77(6):2008-18 - PubMed
  42. J Microbiol Methods. 2011 Jul;86(1):42-51 - PubMed
  43. Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4 - PubMed
  44. Curr Opin Microbiol. 2011 Jun;14(3):300-6 - PubMed
  45. Environ Microbiol. 2011 Dec;13(12):3219-34 - PubMed
  46. PLoS One. 2011;6(9):e24570 - PubMed
  47. ISME J. 2012 Mar;6(3):513-23 - PubMed
  48. ISME J. 2012 Apr;6(4):724-32 - PubMed
  49. Nat Rev Microbiol. 2012 May 14;10(7):497-506 - PubMed
  50. Front Microbiol. 2012 May 31;3:168 - PubMed
  51. ISME J. 2012 Nov;6(11):2014-23 - PubMed
  52. ISME J. 2013 Apr;7(4):685-96 - PubMed
  53. ISME J. 2013 Jul;7(7):1310-21 - PubMed
  54. Microbiologyopen. 2013 Aug;2(4):541-52 - PubMed
  55. Environ Microbiol Rep. 2012 Feb;4(1):1-9 - PubMed
  56. Environ Microbiol Rep. 2011 Dec;3(6):689-97 - PubMed
  57. Nature. 2013 Jul 25;499(7459):431-7 - PubMed
  58. PLoS One. 2013 Sep 02;8(9):e72779 - PubMed
  59. Mol Ecol. 2014 Feb;23(4):954-64 - PubMed
  60. ISME J. 2014 Nov;8(11):2167-79 - PubMed
  61. Extremophiles. 2014 Sep;18(5):865-75 - PubMed
  62. ISME J. 2015 Mar 17;9(4):990-1002 - PubMed
  63. Oecologia. 2001 Oct;129(2):271-280 - PubMed

Publication Types