Display options
Share it on

Int J Clin Exp Med. 2015 Jan 15;8(1):1526-33. eCollection 2015.

Increased production of soluble vascular endothelial growth factors receptor-1 in CHO-cell line by using new combination of chitosan-protein lipid nanoparticles.

International journal of clinical and experimental medicine

Poopak Farnia, Jalaledin Ghanavi, Afshin Bahrami, Mojgan Bandehpour, Bahram Kazemi, Ali Akbar Velayati

Affiliations

  1. Experimental Medicine and Tissue Engineering Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences Tehran, Iran.
  2. Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran ; Cellular and Molecular Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran.
  3. Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences Tehran, Iran.

PMID: 25785168 PMCID: PMC4358623

Abstract

The soluble vascular endothelial growth factor receptor-1 (VEGFR1) or sFLT-1 has important role in antiangiogenesis. In this study, the increase expression and production of sFLT-1 fragment by newly designed ChPL-NPs nanoparticles (chitosan-protein lipid) using Chinese hamster ovary cell line (CHO) was evaluated. The assessment and purification of sFLT-1 were carried out by western blotting and fast protein liquid chromatography (FPLC). Thereafter, the angiostatic effect of gene transfer of sFLT-1 in Human umbilical vein endothelial cell line (HUVEC) was evaluated. Our results showed a significance rate of transfection with ChPL-NPs (80-85%) in comparison to standard lipofectamine(2000) (65-70%) (P < 0.05). The anti-angiogenic action of sFLT-1 was observed by in-vitro culture of recombinant protein (sFLT-1; 50 ng/ml) with HUVEC cell lines (5 × 10(6)). The ChPL-NPs nanoparticles can consider a potential carrier system for large scale production of sFLT-1, which ultimately may be use as therapeutic agent in targeting solid tumor tissues.

Keywords: ChPL-NPs; VEGFR1; antiangiogenesis; nanoparticles; sFLT-1

References

  1. Pharm Res. 2000 May;17(5):521-5 - PubMed
  2. Nature. 2000 Sep 14;407(6801):249-57 - PubMed
  3. Cancer Res. 2002 Apr 1;62(7):2019-23 - PubMed
  4. Gene Ther. 2002 Mar;9(5):320-6 - PubMed
  5. Nat Rev Cancer. 2002 Oct;2(10):727-39 - PubMed
  6. Biomaterials. 2003 May;24(10):1781-5 - PubMed
  7. Curr Med Chem Anticancer Agents. 2003 Mar;3(2):95-117 - PubMed
  8. Endocrinology. 2004 Feb;145(2):817-22 - PubMed
  9. Biotechnol Bioeng. 2004 Aug 20;87(4):537-45 - PubMed
  10. AAPS J. 2004 Oct 15;6(4):e29 - PubMed
  11. J Pharm Pharm Sci. 2005 Feb 03;7(4):22-8 - PubMed
  12. Biomaterials. 2006 Mar;27(9):2060-5 - PubMed
  13. In Vivo. 2006 Jul-Aug;20(4):511-8 - PubMed
  14. Cancer Gene Ther. 2007 May;14(5):488-98 - PubMed
  15. In Vivo. 2007 Mar-Apr;21(2):147-61 - PubMed
  16. Acta Biochim Biophys Sin (Shanghai). 2007 Jul;39(7):499-506 - PubMed
  17. Biochem Biophys Res Commun. 2008 Oct 24;375(3):287-91 - PubMed
  18. Anticancer Res. 2009 Dec;29(12):5103-9 - PubMed
  19. Curr Protoc Protein Sci. 2010 Aug;Chapter 5:Unit 5.24.1-29 - PubMed
  20. Vasc Cell. 2011 Jan 31;3(1):3 - PubMed
  21. Mol Pharm. 2011 Jun 6;8(3):701-8 - PubMed
  22. Biochim Biophys Acta. 2011 Nov-Dec;1809(11-12):732-45 - PubMed
  23. Bull Exp Biol Med. 2011 Jul;151(3):347-52 - PubMed
  24. Artif Cells Nanomed Biotechnol. 2014 Dec;42(6):376-84 - PubMed
  25. Int J Clin Exp Med. 2013 Sep 25;6(9):773-8 - PubMed
  26. Int J Mycobacteriol. 2012 Mar;1(1):53-6 - PubMed
  27. Eur J Cancer. 1996 Dec;32A(14):2413-22 - PubMed
  28. Nature. 1997 Apr 17;386(6626):671-4 - PubMed
  29. Biochim Biophys Acta. 1997 Oct 23;1329(2):345-56 - PubMed
  30. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8795-800 - PubMed

Publication Types