Display options
Share it on

J Vac Sci Technol A. 2015 Mar;33(2):021407. doi: 10.1116/1.4907924. Epub 2015 Feb 12.

Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization.

Journal of vacuum science & technology. A, Vacuum, surfaces, and films : an official journal of the American Vacuum Society

Gilad Zorn, David G Castner, Anuradha Tyagi, Xin Wang, Hui Wang, Mingdi Yan

Affiliations

  1. National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington , Box 351653, Seattle, Washington 98195-1653.
  2. Department of Chemistry, Portland State University , Portland, Oregon 97207-0751.

PMID: 25759511 PMCID: PMC4327916 DOI: 10.1116/1.4907924

Abstract

Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

References

  1. J Am Chem Soc. 2006 Nov 1;128(43):14067-72 - PubMed
  2. J Phys Chem C Nanomater Interfaces. 2014 Jan 9;118(1):376-383 - PubMed
  3. Biosens Bioelectron. 2010 Oct 15;26(2):344-50 - PubMed
  4. Langmuir. 2009 Feb 17;25(4):2181-7 - PubMed
  5. Acc Chem Res. 2010 Nov 16;43(11):1434-43 - PubMed
  6. Anal Chem. 2007 Sep 15;79(18):6897-902 - PubMed
  7. Acc Chem Res. 2013 Jan 15;46(1):181-9 - PubMed
  8. Langmuir. 2009 Sep 1;25(17):10068-76 - PubMed
  9. Anal Chem. 2010 Nov 1;82(21):9082-9 - PubMed
  10. Chem Rev. 1996 Jun 20;96(4):1533-1554 - PubMed
  11. Anal Chem. 2008 Apr 1;80(7):2564-73 - PubMed
  12. J Chem Phys. 2004 Jun 8;120(22):10792-8 - PubMed
  13. Chem Rev. 2005 Apr;105(4):1103-69 - PubMed
  14. J Mater Chem. 2010 Jun 28;20(24):5041-5046 - PubMed
  15. Langmuir. 2010 Mar 16;26(6):3949-54 - PubMed
  16. J Colloid Interface Sci. 2011 Feb 1;354(1):160-7 - PubMed
  17. Langmuir. 2009 Jul 7;25(13):7432-7 - PubMed
  18. J Biol Chem. 1997 Mar 7;272(10):6388-92 - PubMed
  19. Langmuir. 2004 Jul 6;20(14):5776-81 - PubMed
  20. Langmuir. 2008 May 20;24(10):5319-23 - PubMed
  21. Nano Lett. 2010 Sep 8;10(9):3754-6 - PubMed
  22. Bioconjug Chem. 2011 Jan 19;22(1):26-32 - PubMed

Publication Types

Grant support