Display options
Share it on

Life (Basel). 2015 Jan 19;5(1):214-29. doi: 10.3390/life5010214.

Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine.

Life (Basel, Switzerland)

Jie Sun, Eric Jakobsson, Yingxiao Wang, C Jeffrey Brinker

Affiliations

  1. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. [email protected].
  2. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. [email protected].
  3. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. [email protected].
  4. Department of Chemical and Nuclear Engineering, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NW 87106, USA. [email protected].

PMID: 25607812 PMCID: PMC4390849 DOI: 10.3390/life5010214

Abstract

Various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.

References

  1. Nat Chem. 2014 Jun;6(6):527-33 - PubMed
  2. Drug Discov Today. 2012 Feb;17(3-4):160-6 - PubMed
  3. Nat Commun. 2013;4:2239 - PubMed
  4. Annu Rev Genomics Hum Genet. 2005;6:45-68 - PubMed
  5. Biochim Biophys Acta. 2009 Feb;1788(2):567-74 - PubMed
  6. Small. 2013 Feb 11;9(3):357-62 - PubMed
  7. Int J Nanomedicine. 2012;7:3637-57 - PubMed
  8. Biophys J. 2009 Jan;96(1):192-8 - PubMed
  9. ACS Nano. 2009 Sep 22;3(9):2639-46 - PubMed
  10. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17336-41 - PubMed
  11. Cytokine Growth Factor Rev. 2004 Aug;15(4):205-13 - PubMed
  12. J Am Chem Soc. 2009 Feb 4;131(4):1354-5 - PubMed
  13. Chembiochem. 2008 Oct 13;9(15):2403-10 - PubMed
  14. Angew Chem Int Ed Engl. 2012 Jun 25;51(26):6416-20 - PubMed
  15. Science. 1996 Jan 5;271(5245):43-8 - PubMed
  16. Phys Chem Chem Phys. 2013 Feb 28;15(8):2733-40 - PubMed
  17. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17669-74 - PubMed
  18. Anat Rec. 2002 Nov 1;268(3):208-14 - PubMed
  19. Angew Chem Int Ed Engl. 2011 Sep 26;50(40):9343-7 - PubMed
  20. Nature. 2003 Sep 4;425(6953):27-8 - PubMed
  21. Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a004945 - PubMed
  22. J Am Chem Soc. 2014 Jun 25;136(25):9225-34 - PubMed
  23. Annu Rev Biophys. 2008;37:375-97 - PubMed
  24. Langmuir. 2012 Feb 7;28(5):2842-8 - PubMed
  25. FEBS Lett. 2012 Aug 31;586(18):2882-90 - PubMed
  26. Naturwissenschaften. 2006 Jan;93(1):1-13 - PubMed
  27. Chembiochem. 2003 Nov 7;4(11):1172-5 - PubMed
  28. Nature. 2001 Jan 18;409(6818):387-90 - PubMed
  29. Adv Colloid Interface Sci. 2007 May 31;133(1):1-21 - PubMed
  30. Curr Opin Chem Biol. 2014 Oct;22:1-11 - PubMed
  31. Cancer Metastasis Rev. 2008 Jun;27(2):179-92 - PubMed
  32. Chem Biol. 1995 Oct;2(10):677-82 - PubMed
  33. ACS Nano. 2012 Mar 27;6(3):2174-88 - PubMed
  34. Methods Enzymol. 2003;372:65-86 - PubMed
  35. Langmuir. 2008 Oct 21;24(20):11323-6 - PubMed
  36. Phys Chem Chem Phys. 2010 May 7;12(17):4418-22 - PubMed
  37. Science. 2008 Aug 29;321(5893):1206-10 - PubMed
  38. Trends Biochem Sci. 2001 Oct;26(10):597-604 - PubMed
  39. Biochim Biophys Acta. 2012 Jun;1818(6):1562-9 - PubMed
  40. Blood. 2004 Mar 15;103(6):2325-31 - PubMed
  41. Nature. 2005 Nov 24;438(7067):449-53 - PubMed
  42. Results Probl Cell Differ. 2011;53:1-9 - PubMed
  43. J Biol Phys. 2002 Dec;28(4):733-44 - PubMed
  44. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4697-702 - PubMed
  45. Science. 2010 Jul 2;329(5987):52-6 - PubMed
  46. Biophys J. 1991 Nov;60(5):1017-25 - PubMed
  47. Nat Chem. 2013 Jun;5(6):529-36 - PubMed
  48. J Am Chem Soc. 2013 Oct 23;135(42):15718-21 - PubMed
  49. Langmuir. 2007 Mar 27;23(7):3864-72 - PubMed
  50. N Engl J Med. 2010 Dec 16;363(25):2434-43 - PubMed
  51. Nat Commun. 2013;4:2037 - PubMed
  52. Nat Mater. 2011 May;10(5):389-97 - PubMed
  53. Biophys J. 1997 May;72(5):1954-62 - PubMed

Publication Types