Display options
Share it on

Drug Deliv Transl Res. 2013 Dec;3(6):504-17. doi: 10.1007/s13346-013-0153-z.

In vivo biocompatibility evaluation of electrospun composite scaffolds by subcutaneous implantation in rat.

Drug delivery and translational research

Amit K Jaiswal, Rohit V Dhumal, Jayesh R Bellare, Geeta R Vanage

Affiliations

  1. Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India.

PMID: 25786371 DOI: 10.1007/s13346-013-0153-z

Abstract

In vivo biocompatibility of nanofibrous poly-L-lactic acid (P), poly-L-lactic acid/gelatin (PG), poly-L-lactic acid/hydroxyapatite (PH), and poly-L-lactic acid/gelatin/hydroxyapatite (PGH) scaffolds, useful in regenerative medicine and drug delivery, was evaluated by subcutaneous implantation in both male and female rats (n = 5) for up to 90 days. The body weight of each animal in the study was evaluated on a weekly basis, and no significant difference was noticed. Total and differential leukocyte counts displayed no inflammatory reaction due to scaffold implantation. Gross observation and histology of necropsied vital organs exhibited normal morphology of cell types and tissue, denying any systemic adverse reaction on distal organs. Histology of subcutaneous tissue surrounding scaffolds was done to assess any local toxic effect of implants and found all scaffolds to be compatible and nontoxic. Moreover, no remnant of scaffolds was observed in any of the histological sections, suggesting all scaffolds to be biodegradable. All the results in this study confirm that nanofibrous scaffolds P, PG, PH, and PGH are biocompatible and safe for bone tissue engineering application.

References

  1. Biomaterials. 2008 May;29(13):1989-2006 - PubMed
  2. J Biomed Mater Res. 1983 Mar;17(2):205-27 - PubMed
  3. J Biomed Mater Res A. 2012 Jul;100(7):1751-60 - PubMed
  4. J Biomed Mater Res. 1992 Dec;26(12 ):1553-67 - PubMed
  5. Clin Orthop Relat Res. 1983 Apr;(174):28-42 - PubMed
  6. Biomaterials. 2007 Jan;28(2):335-43 - PubMed
  7. Biomaterials. 2000 Dec;21(24):2635-52 - PubMed
  8. Biomaterials. 2006 Jul;27(21):3934-44 - PubMed
  9. J Foot Ankle Surg. 1996 Sep-Oct;35(5):386-90 - PubMed
  10. Biomaterials. 2008 Oct;29(30):4056-64 - PubMed
  11. J Biomed Mater Res. 1998 Sep 5;41(3):443-54 - PubMed
  12. Biotechniques. 2011 Oct;51(4):239-40, 242, 244 passim - PubMed
  13. Biomed Mater. 2009 Aug;4(4):044106 - PubMed
  14. Biomaterials. 1991 Nov;12(9):810-6 - PubMed
  15. Trends Biotechnol. 1998 May;16(5):224-30 - PubMed
  16. J Biomed Mater Res A. 2003 Dec 1;67(3):844-55 - PubMed
  17. PLoS One. 2011;6(10):e25236 - PubMed
  18. Biomaterials. 2005 May;26(15):2603-10 - PubMed
  19. J Biomed Mater Res A. 2010 Apr;93(1):158-63 - PubMed
  20. Biomaterials. 2012 Oct;33(28):6604-14 - PubMed
  21. ANZ J Surg. 2001 Jun;71(6):354-61 - PubMed
  22. J Biomed Mater Res. 1995 Dec;29(12):1517-24 - PubMed
  23. J Biomed Mater Res A. 2010 Oct;95(1):191-7 - PubMed
  24. Biomaterials. 2012 Jun;33(17):4309-18 - PubMed
  25. Biomaterials. 1993 Apr;14 (5):353-8 - PubMed
  26. Biomaterials. 2008 Aug-Sep;29(24-25):3415-28 - PubMed

Publication Types