Display options
Share it on

Drug Deliv Transl Res. 2012 Jun;2(3):210-21. doi: 10.1007/s13346-012-0074-2.

Investigation of intrathecal transport of NPT002, a prospective therapeutic based on phage M13, in nonhuman primates.

Drug delivery and translational research

Mikhail I Papisov, V Belov, E Belova, A J Fischman, R Fisher, J L Wright, K S Gannon, J Titus, M Gagne, C A Gillooly

Affiliations

  1. Massachusetts General Hospital, Bartlett Hall 500R, 55 Fruit Street, Boston, MA, 02114, USA, [email protected].

PMID: 25786868 DOI: 10.1007/s13346-012-0074-2

Abstract

Presently, there are no effective treatments for conditions characterized by protein misfolding, such as Alzheimer's, Parkinson's, and other diseases involving CNS. Since misfolding occurs at the earliest stage of the disease, it is likely to be involved in subsequent pathological developments. It has been found that NPT002 (bacteriophage M13) directly dissociates aggregates of misfolded proteins that form amyloid, including amyloid-β, tau and α-synuclein. For CNS applications, NPT002 requires delivery to the brain parenchyma, the target tissue. NPT002 is an elongated ~950 nm particle that cannot penetrate into the brain from the blood. Furthermore, phage particles, due to their size, cannot be effectively transported in vivo by diffusion. Considering the physiology of the leptomeningeal space, intrathecal administration appears to be a promising convection-driven avenue for NPT002 delivery. In this paper, we use positron emission tomography to investigate the transport of NPT002 in Macaca fascicularis. The data suggest that approximately 50 % of the administered dose can reach the cerebral leptomeningeal space after a single lumbar intrathecal injection. A biologically significant fraction of the phage then enters the brain, resulting in potentially therapeutic cortical and subcortical exposure.

References

  1. Gut. 1969 Nov;10(11):928-30 - PubMed
  2. J Biol Chem. 2006 Feb 3;281(5):2812-9 - PubMed
  3. Acta Radiol Diagn (Stockh). 1972;13(0):496-523 - PubMed
  4. J Clin Invest. 1965 Jan;44:117-27 - PubMed
  5. IEEE Trans Med Imaging. 1997 Apr;16(2):145-58 - PubMed
  6. Mol Pharm. 2011 Jun 6;8(3):736-47 - PubMed
  7. PLoS One. 2012;7(1):e30341 - PubMed
  8. Br J Radiol. 1966 Apr;39(460):255-62 - PubMed
  9. J Bacteriol. 2003 Apr;185(8):2628-34 - PubMed
  10. Acta Radiol Ther Phys Biol. 1964 Feb;2:24-32 - PubMed
  11. Brain Res. 1982 Jun 3;241(1):31-41 - PubMed
  12. Acta Neuropathol. 1974 Apr 30;27(4):299-315 - PubMed
  13. J Neurosurg. 2012 Aug;117(2):197-203 - PubMed
  14. Drug Deliv Transl Res. 2012 Jun;2(3):201-9 - PubMed
  15. Brain Res. 1985 Feb 4;326(1):47-63 - PubMed

Publication Types