Display options
Share it on

Clin Transl Immunology. 2015 Jan 16;4(1):e31. doi: 10.1038/cti.2014.31. eCollection 2015 Jan.

Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement.

Clinical & translational immunology

Corey Smith, Grethe Økern, Sweera Rehan, Leone Beagley, Sau K Lee, Tanja Aarvak, Karoline W Schjetne, Rajiv Khanna

Affiliations

  1. QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute , Brisbane, Queensland, Australia.
  2. Thermo Fisher Scientific , Oslo, Norway.

PMID: 25671129 PMCID: PMC4318490 DOI: 10.1038/cti.2014.31

Abstract

The manufacture of clinical grade cellular products for adoptive immunotherapy requires ex vivo culture and expansion of human T cells. One of the key components in manufacturing of T cell therapies is human serum (HS) or fetal bovine serum (FBS), which can potentially expose immunotherapy recipient to adventitious infectious pathogens and are thus considered as non-cGMP compliant for adoptive therapy. Here we describe a novel xeno-free serum replacement (SR) with defined components that can be reproducibly used for the production of clinical grade T-cell therapies in combination with several different cell culture media. Dynabeads CD3/CD28 Cell Therapy System (CTS)-activated or antigen-specific T cells expanded using the xeno-free SR, CTS Immune Cell SR, showed comparable growth kinetics observed with cell culture media supplemented with HS or FBS. Importantly the xeno-free SR supplemented medium supported the optimal expansion of T cells specific for subdominant tumour-associated antigens and promoted expansion of T cells with central memory T-cell phenotype, which is favourable for in vivo survival and persistence following adoptive transfer. Furthermore, T cells expanded using xeno-free SR medium were highly amenable to lentivirus-mediated gene transduction for potential application for gene-modified T cells. Taken together, the CTS Immune Cell SR provides a novel platform strategy for the manufacture of clinical grade adoptive cellular therapies.

References

  1. Cytotherapy. 2014 May;16(5):619-30 - PubMed
  2. Arthritis Res. 2002;4 Suppl 3:S161-7 - PubMed
  3. J Exp Med. 2005 Oct 3;202(7):907-12 - PubMed
  4. J Immunol. 2006 Oct 1;177(7):4897-906 - PubMed
  5. Cancer Res. 2012 Mar 1;72(5):1116-25 - PubMed
  6. J Immunother. 2009 Feb-Mar;32(2):169-80 - PubMed
  7. J Exp Med. 2007 Oct 1;204(10):2473-85 - PubMed
  8. Immunol Invest. 2004 May;33(2):109-42 - PubMed
  9. Sci Transl Med. 2014 Feb 19;6(224):224ra25 - PubMed
  10. J Immunol Methods. 2010 Apr 15;355(1-2):52-60 - PubMed
  11. Nat Rev Immunol. 2007 Aug;7(8):585-98 - PubMed
  12. Nat Med. 2004 Sep;10(9):909-15 - PubMed
  13. J Clin Invest. 2005 Jun;115(6):1616-26 - PubMed
  14. Blood. 2011 Jan 20;117(3):1061-70 - PubMed
  15. Blood. 2008 Jun 1;111(11):5326-33 - PubMed
  16. Nat Rev Immunol. 2012 Mar 22;12(4):269-81 - PubMed
  17. N Engl J Med. 2013 Apr 18;368(16):1509-18 - PubMed
  18. J Clin Oncol. 2011 Mar 1;29(7):917-24 - PubMed
  19. Nat Rev Cancer. 2008 Apr;8(4):299-308 - PubMed
  20. N Engl J Med. 2011 Aug 25;365(8):725-33 - PubMed
  21. J Immunother. 2003 Jul-Aug;26(4):332-42 - PubMed
  22. J Clin Oncol. 2014 Mar 10;32(8):798-808 - PubMed
  23. Regen Med. 2012 Jan;7(1):7-13 - PubMed
  24. Am J Transplant. 2011 Jun;11(6):1148-57 - PubMed
  25. Cancer Res. 2014 Jul 1;74(13):3466-76 - PubMed
  26. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16233-8 - PubMed
  27. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9571-6 - PubMed
  28. J Clin Oncol. 2015 Feb 20;33(6):540-9 - PubMed
  29. Bone Marrow Transplant. 2008 Jan;41(2):193-8 - PubMed
  30. Nat Rev Clin Oncol. 2012 Sep;9(9):510-9 - PubMed
  31. Sci Transl Med. 2011 Aug 10;3(95):95ra73 - PubMed
  32. Am J Transplant. 2010 Jan;10(1):173-9 - PubMed
  33. Blood. 1997 Feb 1;89(3):776-9 - PubMed
  34. Hum Gene Ther. 2000 Nov 20;11(17):2377-87 - PubMed

Publication Types