Display options
Share it on

Beilstein J Nanotechnol. 2015 Jan 14;6:167-76. doi: 10.3762/bjnano.6.16. eCollection 2015.

Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells.

Beilstein journal of nanotechnology

Nils Bohmer, Andreas Jordan

Affiliations

  1. Project Biomedical Nanotechnologies, Charité University Medicine, 13353 Berlin, Germany.
  2. Project Biomedical Nanotechnologies, Charité University Medicine, 13353 Berlin, Germany ; MagForce Nanotechnologies AG, 12489 Berlin, Germany.

PMID: 25671161 PMCID: PMC4311761 DOI: 10.3762/bjnano.6.16

Abstract

Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer) as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs) and silica-coated iron oxide nanoparticles (SCIONs) between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles.

Keywords: CDC42; Caveolin-1; endocytosis inhibition; iron oxide nanoparticles; nanoparticle uptake

References

  1. Nanotechnology. 2009 Mar 18;20(11):115103 - PubMed
  2. Annu Rev Cell Dev Biol. 2000;16:483-519 - PubMed
  3. Adv Colloid Interface Sci. 2011 Aug 10;166(1-2):8-23 - PubMed
  4. J Mater Sci Mater Med. 2007 Nov;18(11):2145-9 - PubMed
  5. Biomed Res Int. 2014;2014:908175 - PubMed
  6. Nat Cell Biol. 2006 Jan;8(1):46-54 - PubMed
  7. Cell. 2009 Apr 17;137(2):382.e1-3 - PubMed
  8. Nanomedicine. 2005 Mar;1(1):2-9 - PubMed
  9. Int J Hyperthermia. 2012;28(4):362-73 - PubMed
  10. Int J Hyperthermia. 2011;27(7):682-97 - PubMed
  11. Biomaterials. 2003 Mar;24(6):1001-11 - PubMed
  12. Langmuir. 2009 Feb 17;25(4):2060-7 - PubMed
  13. Int J Nanomedicine. 2012;7:4391-408 - PubMed
  14. Biomed Opt Express. 2011 Oct 1;2(10):2761-9 - PubMed
  15. PLoS One. 2011;6(11):e25507 - PubMed
  16. ACS Nano. 2011 Jun 28;5(6):4434-47 - PubMed
  17. J Cell Biol. 1995 Oct;131(1):69-80 - PubMed
  18. Traffic. 2009 Apr;10(4):364-71 - PubMed
  19. Macromol Biosci. 2013 Jul;13(7):913-20 - PubMed
  20. Annu Rev Biomed Eng. 2007;9:257-88 - PubMed
  21. Mol Biotechnol. 2009 Jul;42(3):358-66 - PubMed
  22. Biomacromolecules. 2008 Feb;9(2):435-43 - PubMed
  23. Adv Drug Deliv Rev. 2013 Jan;65(1):80-8 - PubMed
  24. ACS Nano. 2014 Nov 25;8(11):11778-89 - PubMed
  25. Biochem Biophys Res Commun. 2007 Feb 2;353(1):26-32 - PubMed
  26. Int J Hyperthermia. 2008 Sep;24(6):467-74 - PubMed
  27. Int J Pharm. 2012 Jul 1;430(1-2):372-80 - PubMed
  28. Int J Pharm. 2008 Aug 6;360(1-2):197-203 - PubMed
  29. Adv Drug Deliv Rev. 2006 Dec 1;58(14 ):1471-504 - PubMed
  30. J Neurooncol. 2011 Jun;103(2):317-24 - PubMed
  31. J Biol Chem. 2010 May 14;285(20):15119-25 - PubMed
  32. Nanoscale. 2013 May 7;5(9):3723-32 - PubMed
  33. Nanomedicine (Lond). 2014 Apr;9(5):607-21 - PubMed
  34. Nanotechnology. 2010 Apr 30;21(17 ):175704 - PubMed
  35. ACS Nano. 2010 Nov 23;4(11):6787-97 - PubMed
  36. Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):325-30 - PubMed
  37. Biomaterials. 2009 Jan;30(1):52-7 - PubMed
  38. J Phys Condens Matter. 2012 Apr 25;24(16):164207 - PubMed
  39. J Control Release. 2013 Aug 10;169(3):228-38 - PubMed
  40. Int J Nanomedicine. 2008;3(2):169-80 - PubMed
  41. Chem Soc Rev. 2012 Apr 7;41(7):2718-39 - PubMed
  42. Anal Bioanal Chem. 2011 Jan;399(1):3-27 - PubMed
  43. Nature. 2003 Mar 6;422(6927):37-44 - PubMed

Publication Types