Display options
Share it on

Beilstein J Nanotechnol. 2015 Jan 21;6:232-42. doi: 10.3762/bjnano.6.22. eCollection 2015.

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals.

Beilstein journal of nanotechnology

Johannes Ostermann, Christian Schmidtke, Christopher Wolter, Jan-Philip Merkl, Hauke Kloust, Horst Weller

Affiliations

  1. Institute for Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
  2. Institute for Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany ; Center for Applied Nanotechnology, Grindelallee 117, 20146 Hamburg, Germany ; The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

PMID: 25671167 PMCID: PMC4311591 DOI: 10.3762/bjnano.6.22

Abstract

In this short review, the main challenges in the use of hydrophobic nanoparticles in biomedical application are addressed. It is shown how to overcome the different issues by the use of a polymeric encapsulation system, based on an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. On the basis of this simple molecule, the development of a versatile and powerful phase transfer strategy is summarized, focusing on the main advantages like the adjustable size, the retained properties, the excellent shielding and the diverse functionalization properties of the encapsulated nanoparticles. Finally, the extraordinary properties of these encapsulated nanoparticles in terms of toxicity and specificity in a broad in vitro test is demonstrated.

Keywords: biolable; cellular uptake; fluorescence quenching; poylmeric micelles; quantum dots

References

  1. Sensors (Basel). 2011;11(12):11036-55 - PubMed
  2. Pharm Res. 2010 Dec;27(12):2569-89 - PubMed
  3. Mol Pharm. 2010 Aug 2;7(4):1355-60 - PubMed
  4. Pharm Res. 2005 Dec;22(12 ):2058-68 - PubMed
  5. Biomaterials. 2009 Apr;30(12):2231-40 - PubMed
  6. Nat Rev Drug Discov. 2003 Mar;2(3):214-21 - PubMed
  7. Pharm Res. 2002 Oct;19(10):1488-94 - PubMed
  8. Small. 2011 Nov 18;7(22):3113-27 - PubMed
  9. Langmuir. 2013 Oct 8;29(40):12593-600 - PubMed
  10. Bioconjug Chem. 1995 Mar-Apr;6(2):150-65 - PubMed
  11. Langmuir. 2013 Apr 16;29(15):4915-21 - PubMed
  12. ACS Nano. 2011 Jun 28;5(6):4965-73 - PubMed
  13. ACS Nano. 2013 Oct 22;7(10):9156-67 - PubMed
  14. Small. 2012 Aug 20;8(16):2585-94 - PubMed
  15. Nanoscale. 2013 Dec 7;5(23):11783-94 - PubMed
  16. Cell Mol Life Sci. 2009 Sep;66(17):2873-96 - PubMed
  17. Pharm Res. 2006 Jul;23(7):1417-50 - PubMed
  18. ACS Nano. 2013 Apr 23;7(4):3253-63 - PubMed
  19. Nanoscale. 2013 Aug 21;5(16):7433-44 - PubMed
  20. Science. 2003 Apr 18;300(5618):460-4 - PubMed
  21. Nat Protoc. 2009;4(3):424-36 - PubMed
  22. ACS Nano. 2012 Apr 24;6(4):3346-55 - PubMed
  23. Chem Soc Rev. 2015 Jan 7;44(1):193-227 - PubMed
  24. Nature. 2003 Mar 6;422(6927):37-44 - PubMed
  25. Cancer Res. 1990 Mar 15;50(6):1693-700 - PubMed

Publication Types