Display options
Share it on

J Exerc Nutrition Biochem. 2014 Dec;18(4):327-32. doi: 10.5717/jenb.2014.18.4.327. Epub 2014 Nov 27.

Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note.

Journal of exercise nutrition & biochemistry

Kyeongho Byun, Kazuki Hyodo, Kazuya Suwabe, Sylwester Kujach, Morimasa Kato, Hideaki Soya

Affiliations

  1. Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.
  2. Department of Physiology, Gdansk University of Physical Education and Sport, Gdansk, Poland.
  3. Department of Health and Nutrition, Yonezawa Nutrition University of Yamagata Prefecture, Yamagata, Japan.

PMID: 25671198 PMCID: PMC4322022 DOI: 10.5717/jenb.2014.18.4.327

Abstract

PURPOSE: Functional near-infrared spectroscopy (fNIRS) provides functional imaging of cortical activations by measuring regional oxy- and deoxy-hemoglobin (Hb) changes in the forehead during a cognitive task. There are, however, potential problems regarding NIRS signal contamination by non-cortical hemodynamic (NCH) variables such as skin blood flow, middle cerebral artery blood flow, and heart rate (HR), which are further complicated during acute exercise. It is thus necessary to determine the appropriate post-exercise timing that allows for valid NIRS assessment during a task without any increase in NCH variables. Here, we monitored post-exercise changes in NCH parameters with different intensities of exercise.

METHODS: Fourteen healthy young participants cycled 30, 50 and 70% of their peak oxygen uptake (Vo2peak) for 10 min per intensity, each on different days. Changes in skin blood flow velocity (SBFv), middle cerebral artery mean blood velocity (MCA V mean) and HR were monitored before, during, and after the exercise.

RESULTS: Post-exercise levels of both SBFv and HR in contrast to MCA V mean remained high compared to basal levels and the times taken to return to baseline levels for both parameters were delayed (2-8 min after exercise), depending upon exercise intensity.

CONCLUSION: These results indicate that the delayed clearance of NCH variables of up to 8 min into the post-exercise phase may contaminate NIRS measurements, and could be a limitation of NIRS-based neuroimaging studies.

Keywords: NIRS; exercise intensity; non-cortical hemodynamic changes; post-exercise phase

References

  1. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H1848-55 - PubMed
  2. J Appl Physiol (1985). 2008 Jan;104(1):306-14 - PubMed
  3. Circulation. 2002 Oct 1;106(14 ):1814-20 - PubMed
  4. J Physiol. 2005 Dec 1;569(Pt 2):697-704 - PubMed
  5. J Cereb Blood Flow Metab. 2003 Jan;23(1):1-18 - PubMed
  6. Neurosci Lett. 1993 May 14;154(1-2):101-4 - PubMed
  7. J Biomed Opt. 2005 Jan-Feb;10(1):11014 - PubMed
  8. Neuroimage. 2003 Jul;19(3):555-64 - PubMed
  9. J Biomed Opt. 2007 Nov-Dec;12(6):062111 - PubMed
  10. Trends Neurosci. 1997 Oct;20(10):435-42 - PubMed
  11. J Appl Physiol (1985). 2007 Feb;102(2):713-21 - PubMed
  12. J Appl Physiol (1985). 1992 Mar;72(3):1123-32 - PubMed
  13. Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R200-7 - PubMed
  14. J Cereb Blood Flow Metab. 1993 May;13(3):516-20 - PubMed
  15. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H976-83 - PubMed
  16. Neuroimage. 2014 Sep;98:336-45 - PubMed
  17. Brain Res. 2012 May 9;1453:87-101 - PubMed
  18. Hum Brain Mapp. 2002 Sep;17(1):61-71 - PubMed
  19. Acta Psychol (Amst). 2003 Mar;112(3):297-324 - PubMed
  20. Exp Gerontol. 2012 Aug;47(8):541-51 - PubMed
  21. J Physiol Sci. 2013 Jul;63(4):287-98 - PubMed
  22. Am J Physiol Regul Integr Comp Physiol. 2012 Oct 15;303(8):R791-8 - PubMed
  23. Physiol Behav. 2002 Aug;76(4-5):567-74 - PubMed
  24. J Appl Physiol. 1973 Aug;35(2):236-43 - PubMed
  25. Eur J Appl Physiol. 2013 Nov;113(11):2841-8 - PubMed
  26. J Sport Exerc Psychol. 2009 Aug;31(4):505-53 - PubMed
  27. J Appl Physiol. 1967 Jan;22(1):71-85 - PubMed
  28. Acta Physiol Scand. 1996 Dec;158(4):349-56 - PubMed
  29. Neurobiol Aging. 2012 Nov;33(11):2621-32 - PubMed
  30. Brain Res. 2010 Jun 23;1341:12-24 - PubMed
  31. Neuroimage. 2006 Jul 15;31(4):1592-600 - PubMed
  32. J Appl Physiol (1985). 2008 Jul;105(1):266-73 - PubMed
  33. J Appl Physiol. 1972 Sep;33(3):351-6 - PubMed
  34. Behav Brain Res. 2007 Jan 25;176(2):259-66 - PubMed
  35. J Appl Physiol (1985). 2006 Jan;100(1):221-4 - PubMed
  36. Neuroreport. 1996 Aug 12;7(12):1977-81 - PubMed
  37. Neuroimage. 2010 May 1;50(4):1702-10 - PubMed
  38. J Appl Physiol (1985). 2010 May;108(5):1210-6 - PubMed
  39. Med Phys. 1995 Dec;22(12):1997-2005 - PubMed
  40. Neurosci Lett. 1993 Feb 5;150(1):5-8 - PubMed
  41. Scand J Med Sci Sports. 2013 Feb;23 (1):e32-7 - PubMed

Publication Types