Display options
Share it on

Front Endocrinol (Lausanne). 2015 Jan 06;5:232. doi: 10.3389/fendo.2014.00232. eCollection 2014.

Impact of Maternal Melatonin Suppression on Amount and Functionality of Brown Adipose Tissue (BAT) in the Newborn Sheep.

Frontiers in endocrinology

Maria Seron-Ferre, Henry Reynolds, Natalia Andrea Mendez, Mauricio Mondaca, Francisco Valenzuela, Renato Ebensperger, Guillermo J Valenzuela, Emilio A Herrera, Anibal J Llanos, Claudia Torres-Farfan

Affiliations

  1. Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile , Santiago , Chile ; Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile , Santiago , Chile.
  2. Facultad de Medicina, Laboratorio de Cronobiología del Desarrollo, Universidad Austral de Chile , Valdivia , Chile.
  3. Department of Women's Health, Arrowhead Regional Medical Center , San Bernardino, CA , USA.
  4. Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile , Santiago , Chile.

PMID: 25610428 PMCID: PMC4285176 DOI: 10.3389/fendo.2014.00232

Abstract

In human and sheep newborns, brown adipose tissue (BAT) accrued during fetal development is used for newborn thermogenesis. Here, we explored the role of maternal melatonin during gestation on the amount and functionality of BAT in the neonate. We studied BAT from six lambs gestated by ewes exposed to constant light from 63% gestation until delivery to suppress melatonin (LL), six lambs gestated by ewes exposed to LL but receiving daily oral melatonin (12 mg at 1700 h, LL + Mel) and another six control lambs gestated by ewes maintained in 12 h light:12 h dark (LD). Lambs were instrumented at 2 days of age. At 4-6 days of age, they were exposed to 24°C (thermal neutrality conditions) for 1 h, 4°C for 1 h, and 24°C for 1 h. Afterward, lambs were euthanized and BAT was dissected for mRNA measurement, histology, and ex vivo experiments. LL newborns had lower central BAT and skin temperature under thermal neutrality and at 4°C, and higher plasma norepinephrine concentration than LD newborns. In response to 4°C, they had a pronounced decrease in skin temperature and did not increase plasma glycerol. BAT weight in LL newborns was about half of that of LD newborns. Ex vivo, BAT from LL newborns showed increased basal lipolysis and did not respond to NE. In addition, expression of adipogenic/thermogenic genes (UCP1, ADBR3, PPARγ, PPARα, PGC1α, C/EBPβ, and perilipin) and of the clock genes Bmal1, Clock, and Per2 was increased. Remarkably, the effects observed in LL newborns were absent in LL + Mel newborns. Thus, our results support that maternal melatonin during gestation is important in determining amount and normal functionality of BAT in the neonate.

Keywords: SCN; circadian; constant light; development; newborn; thermoregulation

References

  1. Endocrinology. 2008 Apr;149(4):1454-61 - PubMed
  2. Mol Metab. 2013 May 10;2(3):184-93 - PubMed
  3. Cell Cycle. 2010 Jul 1;9(13):2515-21 - PubMed
  4. Am J Physiol. 1998 Jul;275(1 Pt 2):R112-9 - PubMed
  5. Endocrinology. 2007 Jan;148(1):461-8 - PubMed
  6. Am J Physiol. 1999 Nov;277(5 Pt 2):R1313-20 - PubMed
  7. Acta Physiol (Oxf). 2014 Jan;210(1):20-30 - PubMed
  8. Am J Cardiol. 1999 May 1;83(9):1417-9 - PubMed
  9. PLoS One. 2014 Mar 24;9(3):e91313 - PubMed
  10. J Physiol. 2008 Aug 15;586(16):4017-27 - PubMed
  11. J Physiol. 2004 Feb 1;554(Pt 3):841-56 - PubMed
  12. Exp Physiol. 2011 Jul;96(7):611-22 - PubMed
  13. PLoS One. 2010 Nov 16;5(11):e14006 - PubMed
  14. J Pineal Res. 2009 Jan;46(1):87-94 - PubMed
  15. J Dev Physiol. 1987 Oct;9(5):399-408 - PubMed
  16. Scientifica (Cairo). 2013;2013:305763 - PubMed
  17. PLoS One. 2012;7(6):e38795 - PubMed
  18. Endocrinology. 2011 May;152(5):1891-900 - PubMed
  19. J Physiol. 2003 Sep 15;551(Pt 3):1043-8 - PubMed
  20. PLoS One. 2013;8(2):e57710 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2007 Jun;292(6):R2234-40 - PubMed
  22. J Pineal Res. 2002 Nov;33(4):218-24 - PubMed
  23. Am J Physiol Regul Integr Comp Physiol. 2001 Aug;281(2):R666-72 - PubMed
  24. Vasc Health Risk Manag. 2011;7:577-84 - PubMed
  25. J Dairy Sci. 2007 Nov;90(11):5237-46 - PubMed
  26. Anim Reprod Sci. 2007 May;99(1-2):93-105 - PubMed
  27. Endocrinology. 2005 Sep;146(9):3943-9 - PubMed
  28. Physiol Rev. 2004 Jan;84(1):277-359 - PubMed
  29. J Orthop Res. 2009 Apr;27(4):504-9 - PubMed
  30. PLoS One. 2012;7(8):e42713 - PubMed
  31. Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1312-8 - PubMed
  32. Cell Metab. 2010 Nov 3;12(5):509-20 - PubMed
  33. PLoS One. 2013 Aug 26;8(8):e70109 - PubMed
  34. Nat Clin Pract Nephrol. 2006 Dec;2(12):700-7 - PubMed
  35. J Nippon Med Sch. 2004 Dec;71(6):360-70 - PubMed
  36. J Pineal Res. 1999 Jan;26(1):43-9 - PubMed
  37. J Endocrinol. 1994 Sep;142(3):475-84 - PubMed
  38. J Dev Physiol. 1990 Mar;13(3):141-6 - PubMed
  39. J Physiol. 2002 Apr 1;540(Pt 1):351-66 - PubMed
  40. Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1382-6 - PubMed
  41. FEBS Lett. 2010 Aug 4;584(15):3250-9 - PubMed
  42. J Physiol. 1968 Sep;198(2):251-76 - PubMed
  43. Exp Physiol. 2014 Sep;99(9):1214-28 - PubMed
  44. J Physiol. 1968 Sep;198(2):277-89 - PubMed
  45. J Biol Chem. 2004 Mar 12;279(11):10070-6 - PubMed
  46. J Physiol. 1973 Oct;234(1):65-77 - PubMed
  47. Endocrinology. 1991 Apr;128(4):2083-90 - PubMed
  48. Am J Hypertens. 1998 Feb;11(2):219-29 - PubMed
  49. Horm Metab Res. 2011 May;43(5):337-42 - PubMed
  50. J Mol Cell Cardiol. 2014 Jan;66:1-11 - PubMed

Publication Types