Display options
Share it on

Clin Epigenetics. 2015 Mar 13;7:22. doi: 10.1186/s13148-015-0062-8. eCollection 2015.

The IGF1 P2 promoter is an epigenetic QTL for circulating IGF1 and human growth.

Clinical epigenetics

Meriem Ouni, Yasemin Gunes, Marie-Pierre Belot, Anne-Laure Castell, Delphine Fradin, Pierre Bougnères

Affiliations

  1. Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France.
  2. Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France.
  3. Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France ; Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France.

PMID: 25789079 PMCID: PMC4363053 DOI: 10.1186/s13148-015-0062-8

Abstract

BACKGROUND: Even if genetics play an important role, individual variation in stature remains unexplained at the molecular level. Indeed, genome-wide association study (GWAS) have revealed hundreds of variants that contribute to the variability of height but could explain only a limited part of it, and no single variant accounts for more than 0.3% of height variance. At the interface of genetics and environment, epigenetics contributes to phenotypic diversity. Quantifying the impact of epigenetic variation on quantitative traits, an emerging challenge in humans, has not been attempted for height. Since insulin-like growth factor 1 (IGF1) controls postnatal growth, we tested whether the CG methylation of the two promoters (P1 and P2) of the IGF1 gene is a potential epigenetic contributor to the individual variation in circulating IGF1 and stature in growing children.

RESULTS: Child height was closely correlated with serum IGF1. The methylation of a cluster of six CGs located within the proximal part of the IGF1 P2 promoter showed a strong negative association with serum IGF1 and growth. The highest association was for CG-137 methylation, which contributed 13% to the variance of height and 10% to serum IGF1. CG methylation (studied in children undergoing surgery) was approximately 50% lower in liver and growth plates, indicating that the IGF1 promoters are tissue-differentially methylated regions (t-DMR). CG methylation was inversely correlated with the transcriptional activity of the P2 promoter in mononuclear blood cells and in transfection experiments, suggesting that the observed association of methylation with the studied traits reflects true biological causality.

CONCLUSIONS: Our observations introduce epigenetics among the individual determinants of child growth and serum IGF1. The P2 promoter of the IGF1 gene is the first epigenetic quantitative trait locus (QTL(epi)) reported in humans. The CG methylation of the P2 promoter takes place among the multifactorial factors explaining the variation in human stature.

Keywords: DNA methylation; Epigenetics; Growth; Height; IGF1; QTLepi; Short stature; t-DMR

References

  1. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12979-84 - PubMed
  2. Best Pract Res Clin Endocrinol Metab. 2008 Jun;22(3):415-31 - PubMed
  3. Hum Mol Genet. 2010 Jun 1;19(11):2303-12 - PubMed
  4. Trends Genet. 2006 Jul;22(7):347-50 - PubMed
  5. J Clin Endocrinol Metab. 2006 Nov;91(11):4235-6 - PubMed
  6. Dev Biol. 2001 Jan 1;229(1):141-62 - PubMed
  7. Annu Rev Nutr. 1991;11:393-412 - PubMed
  8. Curr Opin Genet Dev. 2008 Apr;18(2):221-6 - PubMed
  9. Nat Genet. 2006 Dec;38(12):1378-85 - PubMed
  10. Nat Genet. 2008 Feb;40(2):198-203 - PubMed
  11. Growth Horm IGF Res. 2005 Jul;15 Suppl A:S3-5 - PubMed
  12. Nat Genet. 2010 Jul;42(7):565-9 - PubMed
  13. Endocr Dev. 2005;9:11-6 - PubMed
  14. FASEB J. 2010 Sep;24(9):3135-44 - PubMed
  15. Hum Mol Genet. 2011 Nov 15;20(22):4299-310 - PubMed
  16. Cell. 2013 May 23;153(5):1134-48 - PubMed
  17. Nat Rev Genet. 2011 Jul 12;12(8):529-41 - PubMed
  18. J Clin Endocrinol Metab. 2006 Jul;91(7):2514-9 - PubMed
  19. Mol Cell Endocrinol. 1991 Jun;78(1-2):115-25 - PubMed
  20. Cancer Epidemiol Biomarkers Prev. 2005 Jan;14(1):144-51 - PubMed
  21. Nucleic Acids Res. 2008 Jun;36(10):e55 - PubMed
  22. J Clin Endocrinol Metab. 2002 Jun;87(6):2720 - PubMed
  23. Genetics. 1997 Oct;147(2):765-76 - PubMed
  24. Diabetes. 2002 Jul;51(7):2313-6 - PubMed
  25. Nature. 2010 Oct 14;467(7317):832-8 - PubMed
  26. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-9 - PubMed
  27. Am J Obstet Gynecol. 1996 Nov;175(5):1180-8 - PubMed
  28. Nestle Nutr Inst Workshop Ser. 2013;71:115-26 - PubMed
  29. Nat Genet. 2014 Nov;46(11):1173-86 - PubMed
  30. Nat Genet. 2011 Oct 27;43(11):1050-1 - PubMed
  31. Nat Neurosci. 2009 Dec;12(12):1559-66 - PubMed
  32. J Clin Endocrinol Metab. 1994 Feb;78(2):310-2 - PubMed
  33. Twin Res. 2003 Oct;6(5):399-408 - PubMed
  34. Proc Soc Exp Biol Med. 2000 Apr;223(4):344-51 - PubMed
  35. J Hum Genet. 2010 Jan;55(1):27-31 - PubMed
  36. Nat Genet. 2009 Feb;41(2):240-5 - PubMed
  37. Mol Endocrinol. 1995 Oct;9(10):1380-95 - PubMed
  38. Sci Transl Med. 2010 Sep 15;2(49):49ra67 - PubMed
  39. Nat Rev Genet. 2008 Nov;9(11):883-90 - PubMed
  40. Mol Endocrinol. 2010 Oct;24(10):2038-49 - PubMed
  41. Genet Res (Camb). 2010 Dec;92(5-6):371-9 - PubMed
  42. Genome Biol. 2011;12(1):R10 - PubMed
  43. Lancet. 2002 Mar 23;359(9311):1036-7 - PubMed
  44. Hum Mol Genet. 2006 Jan 1;15(1):1-10 - PubMed
  45. J Clin Invest. 1996 Dec 1;98(11):2612-5 - PubMed
  46. Econ Hum Biol. 2003 Jun;1(2):161-8 - PubMed
  47. Nat Genet. 2007 Oct;39(10):1245-50 - PubMed
  48. Epigenetics. 2006 Jul-Sep;1(3):127-30 - PubMed
  49. Hum Genet. 2007 Sep;122(2):129-39 - PubMed
  50. Annu Rev Med. 2011;62:11-24 - PubMed
  51. Trends Genet. 2004 Mar;20(3):113-6 - PubMed
  52. PLoS One. 2012;7(5):e36278 - PubMed
  53. J Clin Endocrinol Metab. 2008 Nov;93(11):4210-7 - PubMed
  54. Mol Endocrinol. 2010 Apr;24(4):779-89 - PubMed
  55. Epigenetics. 2011 Jan;6(1):76-85 - PubMed
  56. Mol Endocrinol. 1991 Nov;5(11):1677-86 - PubMed
  57. Hum Mol Genet. 2008 May 15;17(10):1457-64 - PubMed
  58. Epigenetics. 2010 Oct 1;5(7):578-82 - PubMed
  59. PLoS One. 2009 Sep 09;4(9):e6953 - PubMed
  60. Nature. 2009 Oct 8;461(7265):747-53 - PubMed
  61. Nat Protoc. 2007;2(9):2265-75 - PubMed
  62. Nat Genet. 2008 May;40(5):575-83 - PubMed
  63. Nat Rev Genet. 2013 Aug;14(8):585-94 - PubMed
  64. Carcinogenesis. 2006 Apr;27(4):758-65 - PubMed
  65. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3740-5 - PubMed
  66. Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R3-R10 - PubMed
  67. Front Endocrinol (Lausanne). 2013 Mar 26;4:39 - PubMed
  68. Trends Endocrinol Metab. 2012 Apr;23(4):186-93 - PubMed
  69. Genetics. 2009 Jul;182(3):845-50 - PubMed
  70. Nat Genet. 2007 Apr;39(4):457-66 - PubMed
  71. Nat Genet. 2004 Jul;36(7):720-4 - PubMed
  72. N Engl J Med. 1996 Oct 31;335(18):1363-7 - PubMed
  73. PLoS One. 2012;7(11):e50278 - PubMed
  74. Clin Chem. 2011 Oct;57(10):1424-35 - PubMed

Publication Types