Display options
Share it on

Front Microbiol. 2015 Feb 13;6:50. doi: 10.3389/fmicb.2015.00050. eCollection 2015.

Host response during Yersinia pestis infection of human bronchial epithelial cells involves negative regulation of autophagy and suggests a modulation of survival-related and cellular growth pathways.

Frontiers in microbiology

Farhang Alem, Kuan Yao, Douglas Lane, Valerie Calvert, Emanuel F Petricoin, Liana Kramer, Martha L Hale, Sina Bavari, Rekha G Panchal, Ramin M Hakami

Affiliations

  1. National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA.
  2. U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA.
  3. Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University Manassas, VA, USA.

PMID: 25762983 PMCID: PMC4327736 DOI: 10.3389/fmicb.2015.00050

Abstract

Yersinia pestis (Yp) causes the re-emerging disease plague, and is classified by the CDC and NIAID as a highest priority (Category A) pathogen. Currently, there is no approved human vaccine available and advances in early diagnostics and effective therapeutics are urgently needed. A deep understanding of the mechanisms of host response to Yp infection can significantly advance these three areas. We employed the Reverse Phase Protein Microarray (RPMA) technology to reveal the dynamic states of either protein level changes or phosphorylation changes associated with kinase-driven signaling pathways during host cell response to Yp infection. RPMA allowed quantitative profiling of changes in the intracellular communication network of human lung epithelial cells at different times post infection and in response to different treatment conditions, which included infection with the virulent Yp strain CO92, infection with a derivative avirulent strain CO92 (Pgm-, Pst-), treatment with heat inactivated CO92, and treatment with LPS. Responses to a total of 111 validated antibodies were profiled, leading to discovery of 12 novel protein hits. The RPMA analysis also identified several protein hits previously reported in the context of Yp infection. Furthermore, the results validated several proteins previously reported in the context of infection with other Yersinia species or implicated for potential relevance through recombinant protein and cell transfection studies. The RPMA results point to strong modulation of survival/apoptosis and cell growth pathways during early host response and also suggest a model of negative regulation of the autophagy pathway. We find significant cytoplasmic localization of p53 and reduced LC3-I to LC3-II conversion in response to Yp infection, consistent with negative regulation of autophagy. These studies allow for a deeper understanding of the pathogenesis mechanisms and the discovery of innovative approaches for prevention, early diagnosis, and treatment of plague.

Keywords: RPMA; Yersinia pestis; apoptosis and autophagy; cell growth; host response; phosphorylation changes; proteomics; signaling pathways

References

  1. Eur J Biochem. 2001 May;268(10 ):2779-83 - PubMed
  2. Nature. 1996 Mar 7;380(6569):75-9 - PubMed
  3. Drug Resist Updat. 2003 Dec;6(6):313-22 - PubMed
  4. Clin Cancer Res. 2012 Dec 1;18(23):6426-35 - PubMed
  5. Nat Cell Biol. 2008 Jun;10 (6):676-87 - PubMed
  6. Discov Med. 2010 Feb;9(45):145-52 - PubMed
  7. J Microbiol Methods. 2009 Jun;77(3):316-9 - PubMed
  8. Nat Rev Mol Cell Biol. 2002 Oct;3(10):742-52 - PubMed
  9. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18574-9 - PubMed
  10. IUBMB Life. 2006 Nov;58(11):621-31 - PubMed
  11. Cell Host Microbe. 2013 Sep 11;14(3):306-17 - PubMed
  12. EMBO J. 1997 May 15;16(10):2730-44 - PubMed
  13. PLoS Pathog. 2014 Jun 05;10 (6):e1004159 - PubMed
  14. Front Cell Infect Microbiol. 2013 Dec 24;3:106 - PubMed
  15. Dis Markers. 2010;28(4):225-32 - PubMed
  16. Cell Death Differ. 1999 Feb;6(2):99-104 - PubMed
  17. Oncogene. 2000 Jun 29;19(28):3164-71 - PubMed
  18. Cell Death Differ. 2000 Oct;7(10):984-93 - PubMed
  19. Oncogene. 2006 Sep 7;25(40):5485-94 - PubMed
  20. Nat Rev Mol Cell Biol. 2014 Feb;15(2):81-94 - PubMed
  21. Immunol Res. 2013 Dec;57(1-3):237-45 - PubMed
  22. Dev Cell. 2006 Mar;10 (3):317-27 - PubMed
  23. Cell. 1992 Apr 3;69(1):119-28 - PubMed
  24. Int J Pharm. 2003 May 12;257(1-2):161-7 - PubMed
  25. Cell. 1998 Aug 7;94(3):339-52 - PubMed
  26. Mol Cell. 2007 May 25;26(4):465-77 - PubMed
  27. PLoS One. 2010 Nov 03;5(11):e13805 - PubMed
  28. Mol Cell Biol. 2007 Apr;27(7):2572-81 - PubMed
  29. PLoS Pathog. 2013;9(4):e1003324 - PubMed
  30. Eur J Cell Biol. 2011 Nov;90(11):951-4 - PubMed
  31. Exp Mol Med. 2012 Feb 29;44(2):99-108 - PubMed
  32. Cell Microbiol. 2000 Jun;2(3):231-8 - PubMed
  33. Vaccine. 2002 May 22;20(17-18):2206-14 - PubMed
  34. Apoptosis. 2014 Sep;19(9):1389-98 - PubMed
  35. Infect Drug Resist. 2014 Sep 18;7:239-51 - PubMed
  36. Science. 2000 Nov 24;290(5496):1594-7 - PubMed
  37. Genes Dev. 2000 Jun 15;14 (12 ):1448-59 - PubMed
  38. J Biol Chem. 2001 Mar 9;276(10):7320-6 - PubMed
  39. J Exp Med. 2000 Jul 3;192(1):99-104 - PubMed
  40. Mol Immunol. 2005 Jul;42(11):1385-92 - PubMed
  41. PLoS One. 2012;7(11):e49943 - PubMed
  42. Annu Rev Biochem. 1999;68:821-61 - PubMed
  43. Cell Signal. 2014 Aug;26(8):1680-9 - PubMed
  44. Oncogene. 1999 May 13;18(19):2988-96 - PubMed
  45. J Biol Chem. 1999 Aug 13;274(33):22932-40 - PubMed
  46. Science. 1997 Oct 24;278(5338):687-9 - PubMed
  47. Oncogene. 2015 Jun 4;34(23 ):2978-90 - PubMed
  48. Nature. 2012 May 09;485(7400):661-5 - PubMed
  49. Cell. 1997 Oct 17;91(2):231-41 - PubMed
  50. J Clin Immunol. 2005 May;25(3):215-23 - PubMed
  51. Mol Immunol. 2004 Jul;41(8):767-74 - PubMed
  52. BMC Biol. 2004 Nov 18;2:24 - PubMed
  53. J Cell Biol. 2006 Apr 24;173(2):279-89 - PubMed
  54. Infect Immun. 1991 Dec;59(12):4562-9 - PubMed
  55. J Biol Chem. 2000 Nov 10;275(45):35281-90 - PubMed
  56. J Biol Chem. 2001 Jun 8;276(23):19706-14 - PubMed
  57. PLoS One. 2012;7(4):e36019 - PubMed
  58. Nat Rev Mol Cell Biol. 2001 Aug;2(8):599-609 - PubMed
  59. Semin Cell Dev Biol. 2004 Apr;15(2):177-82 - PubMed
  60. Toxicol Appl Pharmacol. 2014 Aug 1;278(3):249-58 - PubMed
  61. PLoS One. 2013;8(1):e55167 - PubMed
  62. Immunity. 2005 Sep;23(3):319-29 - PubMed
  63. J Biol Chem. 2003 Oct 24;278(43):41677-84 - PubMed
  64. Cancer Res. 2008 Aug 15;68(16):6643-51 - PubMed
  65. J Cell Biol. 2002 Aug 5;158(3):401-8 - PubMed
  66. Mol Oncol. 2010 Dec;4(6):461-81 - PubMed
  67. Cell Death Differ. 2009 Mar;16(3):368-77 - PubMed
  68. Mol Cancer Res. 2013 Jun;11(6):676-85 - PubMed
  69. Methods Mol Biol. 2013;986:187-214 - PubMed
  70. Cell Host Microbe. 2014 Apr 9;15(4):424-34 - PubMed
  71. Annu Rev Microbiol. 2005;59:69-89 - PubMed
  72. J Biol Chem. 2004 Dec 17;279(51):53272-81 - PubMed
  73. PLoS One. 2009;4(2):e4431 - PubMed
  74. Mol Microbiol. 2002 Aug;45(3):805-15 - PubMed
  75. Cancer Res. 1999 May 15;59(10):2457-63 - PubMed
  76. Endocrinology. 2011 Aug;152(8):3143-54 - PubMed
  77. Cell Microbiol. 2009 Dec;11(12):1782-801 - PubMed
  78. Methods Mol Biol. 2008;445:77-88 - PubMed
  79. Nat Cell Biol. 2002 Sep;4(9):648-57 - PubMed
  80. Clin Immunol. 2005 Mar;114(3):216-26 - PubMed
  81. Nature. 2002 Oct 10;419(6907):634-7 - PubMed
  82. Autophagy. 2008 Aug;4(6):810-4 - PubMed
  83. Infect Immun. 2009 Jun;77(6):2251-61 - PubMed
  84. J Cell Mol Med. 2005 Jan-Mar;9(1):59-71 - PubMed
  85. Cell. 1999 Mar 19;96(6):857-68 - PubMed
  86. J Cell Sci. 2009 Jan 1;122(Pt 1):55-64 - PubMed
  87. J Biol Chem. 1998 Apr 17;273(16):9357-60 - PubMed
  88. J Proteome Res. 2011 Feb 4;10(2):774-9 - PubMed
  89. PLoS One. 2010 Oct 05;5(10):null - PubMed
  90. Mol Biol Cell. 2006 Sep;17(9):3717-28 - PubMed
  91. J Cell Physiol. 2004 May;199(2):227-36 - PubMed
  92. Biochim Biophys Acta. 1995 Jul 28;1242(1):11-28 - PubMed
  93. Chem Biol. 2006 Sep;13(9):957-63 - PubMed

Publication Types