Display options
Share it on

Front Bioeng Biotechnol. 2015 Feb 16;3:14. doi: 10.3389/fbioe.2015.00014. eCollection 2015.

Targeting Cell Cycle Proteins in Breast Cancer Cells with siRNA by Using Lipid-Substituted Polyethylenimines.

Frontiers in bioengineering and biotechnology

Manoj B Parmar, Hamidreza Montazeri Aliabadi, Parvin Mahdipoor, Cezary Kucharski, Robert Maranchuk, Judith C Hugh, Hasan Uludağ

Affiliations

  1. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, AB , Canada.
  2. Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada ; School of Pharmacy, Chapman University , Irvine, CA , USA.
  3. Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada.
  4. Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada.
  5. Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada.
  6. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, AB , Canada ; Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada ; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada.

PMID: 25763370 PMCID: PMC4329877 DOI: 10.3389/fbioe.2015.00014

Abstract

The cell cycle proteins are key regulators of cell cycle progression whose deregulation is one of the causes of breast cancer. RNA interference (RNAi) is an endogenous mechanism to regulate gene expression and it could serve as the basis of regulating aberrant proteins including cell cycle proteins. Since the delivery of small interfering RNA (siRNA) is a main barrier for implementation of RNAi therapy, we explored the potential of a non-viral delivery system, 2.0 kDa polyethylenimines substituted with linoleic acid and caprylic acid, for this purpose. Using a library of siRNAs against cell cycle proteins, we identified cell division cycle protein 20 (CDC20), a recombinase RAD51, and serine-threonine protein kinase CHEK1 as effective targets for breast cancer therapy, and demonstrated their therapeutic potential in breast cancer MDA-MB-435, MDA-MB-231, and MCF7 cells with respect to another well-studied cell cycle protein, kinesin spindle protein. We also explored the efficacy of dicer-substrate siRNA (DsiRNA) against CDC20, RAD51, and CHEK1, where a particular DsiRNA against CDC20 showed an exceptionally high inhibition of cell growth in vitro. There was no apparent effect of silencing selected cell cycle proteins on the potency of the chemotherapy drug doxorubicin. The efficacy of DsiRNA against CDC20 was subsequently assessed in a xenograft model, which indicated a reduced tumor growth as a result of CDC20 DsiRNA therapy. The presented study highlighted specific cell cycle protein targets critical for breast cancer therapy, and provided a polymeric delivery system for their effective down-regulation.

Keywords: CDC20; CHEK1; DsiRNA; RAD51; Xenograft; breast cancer therapy; cell cycle protein; lipid-substituted polymers; non-viral siRNA delivery; siRNA therapy

References

  1. J Biol Chem. 1997 Nov 7;272(45):28501-11 - PubMed
  2. Med Princ Pract. 2005;14 Suppl 1:35-48 - PubMed
  3. Nat Rev Genet. 2007 Mar;8(3):173-84 - PubMed
  4. Int J Cancer. 2006 Aug 1;119(3):599-607 - PubMed
  5. Methods Mol Biol. 2010;596:47-76 - PubMed
  6. Curr Pharm Des. 2013;19(18):3210-4 - PubMed
  7. Methods Mol Biol. 2008;442:3-10 - PubMed
  8. Cancer Gene Ther. 2013 Mar;20(3):169-77 - PubMed
  9. Methods Mol Biol. 2011;731:219-36 - PubMed
  10. Annu Rev Biophys. 2013;42:217-39 - PubMed
  11. Acta Biomater. 2011 May;7(5):2209-17 - PubMed
  12. Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):473-82 - PubMed
  13. Biochem Pharmacol. 2006 Feb 28;71(5):702-10 - PubMed
  14. Carcinogenesis. 2007 Jan;28(1):81-92 - PubMed
  15. Nat Rev Cancer. 2011 Jan;11(1):59-67 - PubMed
  16. Nucleic Acids Res. 2013 Jul;41(12):6209-21 - PubMed
  17. J Control Release. 2013 Nov 28;172(1):219-28 - PubMed
  18. Oncogene. 1999 Jul 29;18(30):4295-300 - PubMed
  19. DNA Repair (Amst). 2008 May 3;7(5):686-93 - PubMed
  20. Oncogene. 2004 Jan 15;23(2):546-53 - PubMed
  21. Structure. 2006 Jun;14(6):983-92 - PubMed
  22. J Biomater Sci Polym Ed. 2011;22(7):873-92 - PubMed
  23. Mol Cell Biol. 2003 Nov;23 (21):7488-97 - PubMed
  24. J Clin Oncol. 2005 Dec 20;23(36):9408-21 - PubMed
  25. Cell Prolif. 2003 Jun;36(3):131-49 - PubMed
  26. Mol Pharm. 2011 Oct 3;8(5):1821-30 - PubMed
  27. Genomics. 2013 Apr;101(4):213-20 - PubMed
  28. Nucleic Acids Res. 1998 Jun 15;26(12):2859-64 - PubMed
  29. Cancer Discov. 2013 Apr;3(4):406-17 - PubMed
  30. Cell. 1995 Dec 29;83(7):1159-69 - PubMed
  31. Oncogene. 2008 Mar 6;27(11):1562-71 - PubMed
  32. Mol Med Rep. 2012 Jul;6(1):9-15 - PubMed
  33. Anticancer Res. 2008 May-Jun;28(3A):1559-63 - PubMed
  34. Cancer Detect Prev. 2000;24(2):107-18 - PubMed
  35. Prog Cell Cycle Res. 2003;5:5-18 - PubMed
  36. J Pharmacol Exp Ther. 2010 Dec;335(3):830-40 - PubMed
  37. J Cell Biochem. 2006 Nov 1;99(4):1122-31 - PubMed
  38. Mol Ther. 2006 Apr;13(4):644-70 - PubMed
  39. Mol Cell Biol. 2005 May;25(9):3553-62 - PubMed
  40. J Cell Sci. 2004 Jan 1;117(Pt 1):3-7 - PubMed
  41. J Control Release. 2013 Sep 10;170(2):183-90 - PubMed
  42. Macromol Biosci. 2011 May 12;11(5):662-72 - PubMed
  43. Biomaterials. 2012 Mar;33(8):2546-69 - PubMed
  44. Oncogene. 2009 Aug 20;28(33):2925-39 - PubMed
  45. Nat Biotechnol. 2005 Feb;23(2):222-6 - PubMed
  46. J Cell Physiol. 2013 Jan;228(1):58-64 - PubMed
  47. Nat Rev Genet. 2002 Oct;3(10):737-47 - PubMed

Publication Types