Display options
Share it on

Springerplus. 2013 Sep 23;2:482. doi: 10.1186/2193-1801-2-482. eCollection 2013.

Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli.

SpringerPlus

Wade C McGregor, Danuta M Gillner, Sabina I Swierczek, Dali Liu, Richard C Holz

Affiliations

  1. The Department of Applied Sciences and Mathematics, College of Technology and Innovation, Arizona State University, Mesa, AZ 85212 USA.
  2. Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA ; The Department of Chemistry, Silesian University of Technology, Gliwice, 44-100 Poland.
  3. Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA.
  4. Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA.
  5. Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA ; Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA.

PMID: 25674394 PMCID: PMC4320195 DOI: 10.1186/2193-1801-2-482

Abstract

The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (K d) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands.

Keywords: Active site ligands; Bioinorganic Chemistry; Deacetylase; Hydrolysis; Isothermal titration calorimetry; Mechanistic enzymology; Zinc

References

  1. Can J Microbiol. 1999 Nov;45(11):959-69 - PubMed
  2. J Bacteriol. 1989 Mar;171(3):1644-51 - PubMed
  3. Structure. 1994 Apr 15;2(4):283-91 - PubMed
  4. J Bacteriol. 1992 Apr;174(7):2323-31 - PubMed
  5. J Bacteriol. 2000 Mar;182(6):1609-15 - PubMed
  6. Microbiol Rev. 1986 Sep;50(3):280-313 - PubMed
  7. Curr Opin Chem Biol. 2003 Apr;7(2):197-206 - PubMed
  8. Nucleic Acids Res. 2003 Jul 1;31(13):3375-80 - PubMed
  9. J Am Chem Soc. 2005 Oct 12;127(40):14100-7 - PubMed
  10. J Inorg Biochem. 1980 Apr;12(2):131-41 - PubMed
  11. J Inorg Biochem. 2012 Jun;111:157-63 - PubMed
  12. J Biol Inorg Chem. 2006 Jun;11(4):398-408 - PubMed
  13. Biochemistry. 2000 Feb 15;39(6):1285-93 - PubMed
  14. Biochemistry. 2000 Apr 4;39(13):3817-26 - PubMed
  15. Biochemistry. 1998 Jul 21;37(29):10478-87 - PubMed
  16. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68 - PubMed
  17. J Mol Evol. 2002 Oct;55(4):445-59 - PubMed
  18. Biochemistry. 1999 Mar 9;38(10):3019-24 - PubMed
  19. J Med Chem. 1986 Jun;29(6):1023-30 - PubMed
  20. Zh Mikrobiol Epidemiol Immunobiol. 1995 Sep-Oct;(5):48-51 - PubMed
  21. Adv Inorg Biochem. 1984;6:71-111 - PubMed
  22. Anal Biochem. 1989 Nov 1;182(2):319-26 - PubMed
  23. J Biol Inorg Chem. 2006 Mar;11(2):206-16 - PubMed
  24. Structure. 1997 Mar 15;5(3):337-47 - PubMed
  25. J Mol Biol. 2010 Apr 2;397(3):617-26 - PubMed
  26. J Mol Biol. 1970 Mar;48(3):443-53 - PubMed
  27. Microbiology. 1996 Jan;142 ( Pt 1):99-108 - PubMed
  28. J Biol Inorg Chem. 2009 Jan;14(1):1-10 - PubMed
  29. Biochemistry. 2005 Sep 13;44(36):12030-40 - PubMed
  30. Genetika. 1990 Nov;26(11):1915-25 - PubMed
  31. Biophys Chem. 2007 Mar;126(1-3):86-93 - PubMed
  32. Biochemistry. 1997 Apr 8;36(14):4278-86 - PubMed
  33. Biochem Biophys Res Commun. 1983 Jul 29;114(2):646-52 - PubMed
  34. Microbiol Rev. 1986 Sep;50(3):314-52 - PubMed

Publication Types

Grant support