Display options
Share it on

Springerplus. 2015 Feb 01;4:49. doi: 10.1186/s40064-015-0831-z. eCollection 2015.

Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures.

SpringerPlus

Marco Taurino, Ilaria Ingrosso, Leone D'amico, Stefania De Domenico, Isabella Nicoletti, Danilo Corradini, Angelo Santino, Giovanna Giovinazzo

Affiliations

  1. Institute of Food Production Sciences, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy.
  2. Institute of Chemical Methodologies, CNR, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, Rome, Italy.

PMID: 25674504 PMCID: PMC4320690 DOI: 10.1186/s40064-015-0831-z

Abstract

The plant phenol trans-resveratrol, which is mainly found in grape, displays a wide range of biological effects. A cell suspension culture was developed from calli of grape leaves of Vitis vinifera cv. Negramaro in order to study the bioproduction of resveratrol. The effects of a number of secondary plant metabolism elicitors, namely chitosan, methyl jasmonate, jasmonic acid, coronatine, and 12-oxo-phytodienoic acid, were tested on this cell suspension culture. The identification and quantification of stilbenes was achieved with high performance liquid chromatography, with both spectrophotometric and mass spectrometric detection. Of the tested elicitors, methyl jasmonate was the most effective in inducing the biosynthesis of approximately 4 mg g(-1) dry weight (about 60 mg L(-1)) of resveratrol. Conversely, 12-oxo-phytodienoic acid, jasmonic acid, and coronatine were able to trigger the synthesis of approximately 20 mg g(-1) dry weight (200-210 mg L(-1)) of viniferins. Taken together, our results show for the first time different modulatory effects of closely-related jasmonates on stilbene biosynthesis.

Keywords: 12-oxo-phytodienoic; Chitosan; Coronatine; Jasmonic acid; Methyl jasmonate; Viniferins; Vitis vinifera cv. Negramaro

References

  1. Microbiol Mol Biol Rev. 1999 Jun;63(2):266-92 - PubMed
  2. J Agric Food Chem. 2002 May 8;50(10):2731-41 - PubMed
  3. Chem Rec. 2003;3(1):12-21 - PubMed
  4. New Phytol. 2005 Jun;166(3):895-905 - PubMed
  5. BMC Biotechnol. 2006 Mar 21;6:22 - PubMed
  6. J Agric Food Chem. 2007 May 2;55(9):3304-11 - PubMed
  7. Chem Biol. 2007 Jun;14(6):613-21 - PubMed
  8. Plant Physiol Biochem. 2008 Apr;46(4):493-9 - PubMed
  9. BMC Res Notes. 2008 Dec 22;1:132 - PubMed
  10. BMC Genomics. 2009 Aug 06;10:363 - PubMed
  11. Trends Biotechnol. 2009 Dec;27(12):706-13 - PubMed
  12. Appl Microbiol Biotechnol. 2010 Oct;88(3):727-36 - PubMed
  13. Biofactors. 2010 Sep-Oct;36(5):331-41 - PubMed
  14. Nat Prod Res. 2010 Sep;24(15):1488-98 - PubMed
  15. Plant Physiol Biochem. 2011 Mar;49(3):265-74 - PubMed
  16. Appl Microbiol Biotechnol. 2011 Apr;90(2):417-25 - PubMed
  17. J Agric Food Chem. 2011 Sep 14;59(17):9094-101 - PubMed
  18. Plant Cell Rep. 2012 Jan;31(1):81-9 - PubMed
  19. PLoS One. 2011;6(10):e26405 - PubMed
  20. Trends Plant Sci. 2012 Feb;17(2):73-90 - PubMed
  21. J Agric Food Chem. 2012 Feb 1;60(4):929-33 - PubMed
  22. J Biomed Biotechnol. 2012;2012:579089 - PubMed
  23. FEBS Lett. 2012 Jul 30;586(16):2483-7 - PubMed
  24. Plant Foods Hum Nutr. 2012 Sep;67(3):191-9 - PubMed
  25. Enzyme Microb Technol. 2012 Sep 10;51(4):211-6 - PubMed
  26. J Agric Food Chem. 2012 Nov 7;60(44):11135-42 - PubMed
  27. Food Chem. 2011 Jul 15;127(2):727-34 - PubMed
  28. Int J Mol Sci. 2013 Jul 08;14(7):14136-70 - PubMed
  29. Int J Mol Sci. 2013 Sep 27;14(10):19651-69 - PubMed
  30. J Exp Bot. 2014 Jan;65(1):75-88 - PubMed
  31. Proc Nutr Soc. 2014 May;73(2):271-7 - PubMed
  32. Biotechnol Rep (Amst). 2014 May 19;1-2:15-21 - PubMed
  33. Exp Cell Res. 1968 Apr;50(1):151-8 - PubMed

Publication Types