Display options
Share it on

Sci Rep. 2015 Mar 20;5:9333. doi: 10.1038/srep09333.

Highly efficient entanglement swapping and teleportation at telecom wavelength.

Scientific reports

Rui-Bo Jin, Masahiro Takeoka, Utako Takagi, Ryosuke Shimizu, Masahide Sasaki

Affiliations

  1. National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan.
  2. 1] National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan [2] Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
  3. University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.

PMID: 25791212 PMCID: PMC4366812 DOI: 10.1038/srep09333

Abstract

Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

References

  1. Opt Express. 2011 Feb 14;19(4):3004-18 - PubMed
  2. Opt Express. 2013 May 6;21(9):10659-66 - PubMed
  3. Phys Rev Lett. 1991 Aug 5;67(6):661-663 - PubMed
  4. Nature. 2012 Aug 9;488(7410):185-8 - PubMed
  5. Phys Rev Lett. 1996 Aug 19;77(8):1413-1415 - PubMed
  6. Opt Express. 2010 Apr 12;18(8):8182-6 - PubMed
  7. Phys Rev Lett. 2002 Jan 7;88(1):017903 - PubMed
  8. Phys Rev Lett. 2011 Jan 7;106(1):013603 - PubMed
  9. Opt Express. 2013 Nov 4;21(22):27177-84 - PubMed
  10. Nature. 2008 Jun 19;453(7198):1023-30 - PubMed
  11. Opt Express. 2014 Jul 14;22(14):17246-53 - PubMed
  12. Nat Commun. 2011 Nov 22;2:546 - PubMed
  13. Nature. 2001 Nov 22;414(6862):413-8 - PubMed
  14. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14202-5 - PubMed
  15. Phys Rev Lett. 2007 Jun 8;98(23):230501 - PubMed
  16. Opt Express. 2011 Nov 21;19(24):24434-47 - PubMed
  17. Phys Rev Lett. 2010 Aug 13;105(7):070501 - PubMed
  18. Opt Express. 2013 Nov 4;21(22):27260-8 - PubMed
  19. Opt Express. 2014 May 19;22(10):11498-507 - PubMed
  20. Nature. 2012 Sep 13;489(7415):269-73 - PubMed
  21. Sci Rep. 2014;4:7468 - PubMed
  22. Opt Express. 2013 Apr 22;21(8):10208-14 - PubMed
  23. Nature. 2003 Jan 30;421(6922):509-13 - PubMed
  24. Opt Express. 2009 Jun 22;17(13):10748-56 - PubMed
  25. Phys Rev Lett. 1987 Nov 2;59(18):2044-2046 - PubMed

Publication Types