Display options
Share it on

Mol Metab. 2014 Dec 19;4(3):227-36. doi: 10.1016/j.molmet.2014.12.006. eCollection 2015 Mar.

Leptin recruits Creb-regulated transcriptional coactivator 1 to improve hyperglycemia in insulin-deficient diabetes.

Molecular metabolism

Geun Hyang Kim, Andras Szabo, Emily M King, Jennifer Ayala, Julio E Ayala, Judith Y Altarejos

Affiliations

  1. Metabolic Disease Program, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, United States.
  2. Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, United States.
  3. Metabolic Disease Program, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, United States ; Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, United States.

PMID: 25737949 PMCID: PMC4338314 DOI: 10.1016/j.molmet.2014.12.006

Abstract

OBJECTIVE: Leptin alleviates hyperglycemia in rodent models of Type 1 diabetes by activating leptin receptors within the central nervous system. Here we delineate whether non-canonical leptin signaling through the Creb-regulated transcriptional coactivator 1 (Crtc1) contributes to leptin-dependent improvements in diabetic glucose metabolism.

METHODS: We employed mice with a targeted genetic disruption of Crtc1, tracer dilution techniques and neuroanatomical studies to interrogate whether Crtc1 enables leptin to improve glucose metabolism in streptozotocin-induced (STZ) diabetes.

RESULTS: Here we show that leptin improves diabetic glucose metabolism through Crtc1-dependent and independent mechanisms. We find that leptin reduces diabetic hyperglycemia, hepatic gluconeogenic gene expression and selectively increases glucose disposal to brown adipose tissue and heart, in STZ-diabetic Crtc1 (WT) mice but not Crtc1 (+/-) mice. By contrast, leptin decreases circulating glucagon levels in both STZ-diabetic Crtc1 (WT) and Crtc1 (+/-) mice. We also demonstrate that leptin promotes Crtc1 nuclear translocation in pro-opiomelanocortin (Pomc) and non-Pomc neurons within the hypothalamic arcuate nucleus (ARC). Accordingly, leptin's ability to induce Pomc gene expression in the ARC is blunted in STZ-diabetic Crtc1 (+/-) mice.

CONCLUSIONS: Our study reveals that Crtc1 functions as a conduit for leptin's glucoregulatory actions in insulin-dependent diabetes. This study also highlights a new role for Crtc1 in modulating peripheral glucose metabolism.

Keywords: Creb-regulated transcriptional coactivator 1; Glucose; Hypothalamus; Leptin; Type 1 diabetes

References

  1. Cell Metab. 2005 Jan;1(1):63-72 - PubMed
  2. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6129-33 - PubMed
  3. Neuron. 1999 Aug;23 (4):775-86 - PubMed
  4. Diabetes. 1999 Jun;48(6):1275-80 - PubMed
  5. Science. 1995 Jul 28;269(5223):543-6 - PubMed
  6. J Clin Invest. 2013 Jan;123(1):215-23 - PubMed
  7. J Biol Chem. 2005 Jan 7;280(1):183-90 - PubMed
  8. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17391-6 - PubMed
  9. Int J Obes Relat Metab Disord. 2000 Aug;24(8):976-81 - PubMed
  10. FASEB J. 2002 Apr;16(6):509-18 - PubMed
  11. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14070-5 - PubMed
  12. Endocrinology. 2014 Nov;155(11):4157-67 - PubMed
  13. Diabetes. 1999 Jun;48(6):1264-9 - PubMed
  14. J Clin Invest. 2005 Apr;115(4):940-50 - PubMed
  15. Cell. 2012 Jul 6;150(1):207-21 - PubMed
  16. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12339-44 - PubMed
  17. Nature. 2001 Sep 13;413(6852):131-8 - PubMed
  18. J Neurosci. 2004 Feb 18;24(7):1578-83 - PubMed
  19. Am J Physiol. 1998 May;274(5 Pt 2):R1482-91 - PubMed
  20. Nat Med. 2008 Oct;14(10):1112-7 - PubMed
  21. Am J Physiol. 1956 Sep;187(1):15-24 - PubMed
  22. Brain Res. 2011 Mar 10;1378:18-28 - PubMed
  23. Nat Med. 2014 Jul;20(7):759-63 - PubMed
  24. Cell. 2012 Oct 26;151(3):645-57 - PubMed
  25. J Neurosci. 2010 Feb 17;30(7):2472-9 - PubMed
  26. Endocrinology. 2009 Mar;150(3):1155-64 - PubMed
  27. Nature. 1970 Apr 18;226(5242):219-22 - PubMed
  28. Diabetes. 1999 Jul;48(7):1487-92 - PubMed
  29. Am J Physiol. 1985 Mar;248(3 Pt 1):E353-62 - PubMed
  30. Nature. 1996 Apr 25;380(6576):677 - PubMed
  31. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4813-9 - PubMed
  32. Nature. 2001 May 24;411(6836):480-4 - PubMed
  33. FEBS Lett. 1997 Feb 10;403(1):79-82 - PubMed
  34. J Biol Chem. 2000 May 12;275(19):14563-72 - PubMed
  35. Science. 1995 Jul 28;269(5223):540-3 - PubMed
  36. Neuron. 2014 Oct 1;84(1):92-106 - PubMed
  37. Cell Metab. 2013 Sep 3;18(3):431-44 - PubMed
  38. Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14379-84 - PubMed
  39. Nature. 1998 May 7;393(6680):72-6 - PubMed
  40. Curr Biol. 2004 Dec 14;14(23):2156-61 - PubMed
  41. Cell. 2004 Oct 1;119(1):61-74 - PubMed
  42. J Comp Neurol. 1998 Jun 15;395(4):535-47 - PubMed
  43. Nat Neurosci. 2014 Jul;17(7):911-3 - PubMed
  44. J Neurosci. 2007 Jan 3;27(1):69-74 - PubMed
  45. J Biol Chem. 2002 Nov 1;277(44):41547-55 - PubMed
  46. Nature. 1997 Sep 25;389(6649):374-7 - PubMed
  47. Neurosci Lett. 1998 Jun 19;249(2-3):107-10 - PubMed
  48. Diabetes. 2011 May;60(5):1414-23 - PubMed
  49. Nature. 2010 Dec 16;468(7326):933-9 - PubMed
  50. J Comp Neurol. 2013 Oct 1;521(14):3287-302 - PubMed
  51. Endocrinology. 2011 Feb;152(2):394-404 - PubMed
  52. Diabetes. 2014 Dec;63(12 ):4089-99 - PubMed
  53. J Comp Neurol. 2009 Jun 10;514(5):518-32 - PubMed
  54. Obesity (Silver Spring). 2006 Aug;14 Suppl 5:208S-212S - PubMed

Publication Types