Display options
Share it on

Mol Metab. 2015 Jan 02;4(3):186-98. doi: 10.1016/j.molmet.2014.12.011. eCollection 2015 Mar.

High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene.

Molecular metabolism

Jehnan Liu, Sadeesh K Ramakrishnan, Saja S Khuder, Meenakshi K Kaw, Harrison T Muturi, Sumona Ghosh Lester, Sang Jun Lee, Larisa V Fedorova, Andrea J Kim, Iman E Mohamed, Cara Gatto-Weis, Kathryn M Eisenmann, Philip B Conran, Sonia M Najjar

Affiliations

  1. Center for Diabetes and Endocrine Research, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA ; Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
  2. Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
  3. Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
  4. Department of Biochemistry and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.

PMID: 25737954 PMCID: PMC4338312 DOI: 10.1016/j.molmet.2014.12.011

Abstract

OBJECTIVE: Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice.

METHODS: 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN.

RESULTS: In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells.

CONCLUSION: High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

Keywords: Fatty acid synthase; Hyperinsulinemia; Neoplasia; PTEN tumor suppression; Prostate cancer

References

  1. Cancer. 1999 Sep 15;86(6):1019-27 - PubMed
  2. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7841-6 - PubMed
  3. Mol Cancer Res. 2013 Oct;11(10):1159-65 - PubMed
  4. N Engl J Med. 2003 Apr 24;348(17):1625-38 - PubMed
  5. Genes Dev. 2010 Sep 15;24(18):1967-2000 - PubMed
  6. Am J Clin Nutr. 2007 Sep;86(3):s843-57 - PubMed
  7. Oncogene. 2011 Oct 13;30(41):4275-88 - PubMed
  8. Oncogene. 2008 Nov 27;27(56):7131-8 - PubMed
  9. Cancer Detect Prev. 2004;28(2):88-93 - PubMed
  10. Biochim Biophys Acta. 2004 Mar 4;1654(1):69-78 - PubMed
  11. J Biol Chem. 1996 Dec 13;271(50):31779-82 - PubMed
  12. Front Oncol. 2013 Sep 17;3:240 - PubMed
  13. Trends Mol Med. 2007 Jun;13(6):252-9 - PubMed
  14. Oncogene. 2005 Aug 11;24(34):5389-95 - PubMed
  15. Cell Metab. 2008 Feb;7(2):95-6 - PubMed
  16. Cancer Discov. 2011 Jul;1(2):158-69 - PubMed
  17. Diabetologia. 2007 Feb;50(2):395-403 - PubMed
  18. J Pathol. 2011 Jan;223(2):283-94 - PubMed
  19. Cell. 2012 Mar 30;149(1):49-62 - PubMed
  20. Cell. 1998 Oct 2;95(1):29-39 - PubMed
  21. Nat Genet. 1997 Apr;15(4):356-62 - PubMed
  22. Cancer Res. 2013 May 1;73(9):2718-36 - PubMed
  23. J Natl Cancer Inst. 2009 Apr 1;101(7):519-32 - PubMed
  24. Cancer Metastasis Rev. 2013 Dec;32(3-4):643-71 - PubMed
  25. Eur J Cancer. 2013 Apr;49(6):1273-9 - PubMed
  26. J Endocrinol Invest. 2013 Feb;36(2):132-9 - PubMed
  27. Nat Cell Biol. 2000 Feb;2(2):76-83 - PubMed
  28. Semin Immunopathol. 2014 Jan;36(1):55-71 - PubMed
  29. Br J Nutr. 2010 May;103(9):1375-80 - PubMed
  30. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1563-8 - PubMed
  31. Cancer Res. 2003 May 1;63(9):2172-8 - PubMed
  32. Oncogene. 2006 Aug 17;25(36):4965-74 - PubMed
  33. Science. 1999 Jun 18;284(5422):1994-8 - PubMed
  34. Hum Mol Genet. 2001 Mar 15;10 (6):605-16 - PubMed
  35. Mol Cell Biol. 2005 Feb;25(3):1135-45 - PubMed
  36. Gastroenterology. 2008 May;134(5):1459-69 - PubMed
  37. Diabetes. 2002 Apr;51(4):1028-34 - PubMed
  38. Cell Metab. 2013 Aug 6;18(2):153-61 - PubMed
  39. Subcell Biochem. 2008;49:169-94 - PubMed
  40. Cancer Res. 2010 Feb 1;70(3):979-87 - PubMed
  41. Semin Oncol. 2002 Dec;29(6 Suppl 16):15-8 - PubMed
  42. Cancer Epidemiol Biomarkers Prev. 2013 Dec;22(12 ):2333-44 - PubMed
  43. Biochem Biophys Res Commun. 2013 Jan 11;430(2):598-603 - PubMed
  44. J Biol Chem. 1996 Apr 12;271(15):8809-17 - PubMed
  45. Cell Metab. 2014 Mar 4;19(3):393-406 - PubMed
  46. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2082-7 - PubMed
  47. Cell. 2010 Jan 22;140(2):197-208 - PubMed
  48. Nat Rev Cancer. 2007 Oct;7(10):763-77 - PubMed
  49. Differentiation. 2011 Nov-Dec;82(4-5):244-52 - PubMed
  50. Mol Cell Endocrinol. 2001 Nov 26;184(1-2):115-23 - PubMed
  51. Clin Cancer Res. 2001 Jun;7(6):1773-81 - PubMed
  52. Cancer Prev Res (Phila). 2010 Mar;3(3):279-89 - PubMed
  53. Cancer Biol Ther. 2011 Jan 1;11(1):71-83 - PubMed

Publication Types

Grant support