Display options
Share it on

Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2361-6. doi: 10.1073/pnas.1500125112. Epub 2015 Feb 09.

Calorimetric glass transition in a mean-field theory approach.

Proceedings of the National Academy of Sciences of the United States of America

Manuel Sebastian Mariani, Giorgio Parisi, Corrado Rainone

Affiliations

  1. Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland;
  2. Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Istituto per I Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy; and [email protected] [email protected].
  3. Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Rome, Italy; Laboratoire de Physique Théorique, École Normale Supérieure, UMR 8549 CNRS, 75005 Paris, France [email protected] [email protected].

PMID: 25675523 PMCID: PMC4345551 DOI: 10.1073/pnas.1500125112

Abstract

The study of the properties of glass-forming liquids is difficult for many reasons. Analytic solutions of mean-field models are usually available only for systems embedded in a space with an unphysically high number of spatial dimensions; on the experimental and numerical side, the study of the properties of metastable glassy states requires thermalizing the system in the supercooled liquid phase, where the thermalization time may be extremely large. We consider here a hard-sphere mean-field model that is solvable in any number of spatial dimensions; moreover, we easily obtain thermalized configurations even in the glass phase. We study the 3D version of this model and we perform Monte Carlo simulations that mimic heating and cooling experiments performed on ultrastable glasses. The numerical findings are in good agreement with the analytical results and qualitatively capture the features of ultrastable glasses observed in experiments.

Keywords: glass transition; mean-field theory; planting; replica theory; ultrastable glasses

References

  1. Science. 2007 Jan 19;315(5810):353-6 - PubMed
  2. J Chem Phys. 2013 Oct 28;139(16):164502 - PubMed
  3. Phys Rev Lett. 1995 Oct 9;75(15):2847-2850 - PubMed
  4. Phys Rev Lett. 2014 Jul 25;113(4):045901 - PubMed
  5. Phys Rev A Gen Phys. 1989 Jul 15;40(2):1045-1054 - PubMed
  6. Nat Mater. 2013 Feb;12(2):139-44 - PubMed
  7. Phys Rev Lett. 2015 Jan 9;114(1):015701 - PubMed
  8. Nat Commun. 2014;5:3725 - PubMed
  9. J Chem Phys. 2013 Oct 14;139(14):144505 - PubMed
  10. Phys Rev Lett. 2009 Jun 12;102(23):238701 - PubMed
  11. Nat Mater. 2013 Feb;12(2):94-5 - PubMed
  12. Phys Rev Lett. 2002 Jul 15;89(3):035704 - PubMed
  13. J Chem Phys. 2011 Sep 28;135(12):124504 - PubMed
  14. J Phys Chem B. 2013 Oct 24;117(42):12979-94 - PubMed

Publication Types

Grant support