Display options
Share it on

Mol Genet Genomic Med. 2014 Nov;2(6):484-96. doi: 10.1002/mgg3.94. Epub 2014 Jun 23.

Functional and structural impact of the most prevalent missense mutations in classic galactosemia.

Molecular genetics & genomic medicine

Ana I Coelho, Matilde Trabuco, Ruben Ramos, Maria João Silva, Isabel Tavares de Almeida, Paula Leandro, Isabel Rivera, João B Vicente

Affiliations

  1. Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon 1649-003, Lisbon, Portugal.
  2. Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon 1649-003, Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon 1649-003, Lisbon, Portugal.

PMID: 25614870 PMCID: PMC4303218 DOI: 10.1002/mgg3.94

Abstract

Galactose-1-phosphate uridylyltransferase (GALT) is a key enzyme in galactose metabolism, particularly important in the neonatal period due to ingestion of galactose-containing milk. GALT deficiency results in the genetic disorder classic galactosemia, whose pathophysiology is still not fully elucidated. Whereas classic galactosemia has been hypothesized to result from GALT misfolding, a thorough functional-structural characterization of GALT most prevalent variants was still lacking, hampering the development of alternative therapeutic approaches. The aim of this study was to investigate the structural-functional effects of nine GALT mutations, four of which account for the vast majority of the mutations identified in galactosemic patients. Several methodologies were employed to evaluate the mutations' impact on GALT function, on the protein secondary and tertiary structures, and on the aggregation propensity. The major structural effect concerns disturbed propensity for aggregation, particularly striking for the p.Q188R variant, resulting from the most frequent (∼60%) allele at a worldwide scale. The absence of major effects at the secondary and tertiary structure levels suggests that the disturbed aggregation results from subtle perturbations causing a higher and/or longer exposure of hydrophobic residues in the variants as compared to WT GALT. The results herein described indicate a possible benefit from introducing proteostasis regulators and/or chemical/pharmacological chaperones to prevent the accumulation of protein aggregates, in new avenues of therapeutic research for classic galactosemia.

Keywords: Chemical/pharmacological chaperones; GALT; classic galactosemia; misfolding; missense mutations; protein aggregation; proteostasis regulators.

References

  1. Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92 - PubMed
  2. J Inherit Metab Dis. 1999 Jun;22(5):679-82 - PubMed
  3. Biochemistry. 1999 Oct 5;38(40):13398-406 - PubMed
  4. Mol Genet Metab. 2001 Apr;72(4):297-305 - PubMed
  5. Clin Chim Acta. 2010 Jul 4;411(13-14):980-3 - PubMed
  6. Biochim Biophys Acta. 2013 Aug;1832(8):1279-93 - PubMed
  7. Bioinformatics. 2006 Jan 15;22(2):195-201 - PubMed
  8. J Biol Chem. 1999 Mar 5;274(10):6559-66 - PubMed
  9. J Pediatr. 1996 Jan;128(1):89-95 - PubMed
  10. J Biol Chem. 2003 Nov 28;278(48):47449-58 - PubMed
  11. Biochemistry. 1996 Sep 10;35(36):11560-9 - PubMed
  12. Biochemistry. 1989 Mar 7;28(5):2094-9 - PubMed
  13. Biochemistry. 1995 Sep 5;34(35):11049-61 - PubMed
  14. J Inherit Metab Dis. 2006 Aug;29(4):516-25 - PubMed
  15. Protein Eng Des Sel. 2010 Feb;23(2):103-13 - PubMed
  16. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):398-402 - PubMed
  17. Eur J Hum Genet. 1999 Oct-Nov;7(7):757-64 - PubMed
  18. Am J Hum Genet. 1997 Feb;60(2):366-72 - PubMed
  19. J Biol Chem. 2003 Nov 7;278(45):43885-8 - PubMed
  20. Mol Genet Metab. 2007 Sep-Oct;92(1-2):78-87 - PubMed
  21. Hum Genet. 2001 Jul;109(1):117-20 - PubMed
  22. Biochemistry. 1997 Feb 11;36(6):1212-22 - PubMed
  23. Biochemistry. 1995 Apr 25;34(16):5610-7 - PubMed
  24. J Inherit Metab Dis. 1997 Sep;20(5):633-42 - PubMed
  25. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  26. Eur J Pediatr. 1995;154(7 Suppl 2):S21-7 - PubMed
  27. Methods. 2011 Mar;53(3):267-74 - PubMed
  28. Am J Hum Genet. 1995 Mar;56(3):640-6 - PubMed
  29. J Med Chem. 2005 Feb 10;48(3):773-9 - PubMed
  30. FEBS J. 2009 Apr;276(7):1952-61 - PubMed
  31. Protein Eng Des Sel. 2009 Aug;22(8):447-51 - PubMed
  32. Hum Mol Genet. 2009 May 1;18(9):1624-32 - PubMed
  33. Dis Model Mech. 2013 Jan;6(1):84-94 - PubMed
  34. Biochemistry. 1998 Oct 13;37(41):14500-7 - PubMed
  35. Hum Mutat. 2007 Oct;28(10):939-43 - PubMed
  36. Annu Rev Nutr. 2003;23:59-80 - PubMed
  37. Hum Mutat. 1998;11(1):28-38 - PubMed
  38. Mol Genet Metab. 2001 Sep-Oct;74(1-2):264-72 - PubMed
  39. Biochem Mol Med. 1995 Dec;56(2):121-30 - PubMed
  40. Hum Mutat. 1999;13(6):417-30 - PubMed
  41. Mini Rev Med Chem. 2008 Aug;8(9):901-11 - PubMed
  42. Biochemistry. 2002 Jul 23;41(29):9003-14 - PubMed
  43. Protein Eng Des Sel. 2008 Aug;21(8):529-36 - PubMed
  44. J Inherit Metab Dis. 2014 Jan;37(1):43-52 - PubMed
  45. J Inherit Metab Dis. 1990;13(6):802-18 - PubMed
  46. Biochemistry. 1974 Sep 10;13(19):3889-94 - PubMed
  47. J Cell Physiol. 2006 Dec;209(3):701-5 - PubMed
  48. Nat Protoc. 2007;2(9):2212-21 - PubMed
  49. Hum Genet. 2001 Aug;109(2):210-5 - PubMed
  50. J Biol Chem. 2001 Apr 6;276(14):10634-40 - PubMed
  51. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  52. Mol Genet Metab. 2000 Aug;70(4):272-80 - PubMed
  53. J Inherit Metab Dis. 2008 Feb;31(1):97-107 - PubMed
  54. IUBMB Life. 2011 Nov;63(11):949-54 - PubMed
  55. J Inherit Metab Dis. 2013 Jan;36(1):21-7 - PubMed
  56. Am J Hum Genet. 1991 Oct;49(4):860-7 - PubMed
  57. Annu Rev Genomics Hum Genet. 2006;7:103-24 - PubMed
  58. Dis Model Mech. 2014 Jan;7(1):55-61 - PubMed

Publication Types