Display options
Share it on

Cryogenics (Guildf). 2014 Nov-Dec;64:86-94. doi: 10.1016/j.cryogenics.2014.09.005.

On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

Cryogenics

David P Eisenberg, Paul S Steif, Yoed Rabin

Affiliations

  1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.

PMID: 25792762 PMCID: PMC4360916 DOI: 10.1016/j.cryogenics.2014.09.005

Abstract

This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

Keywords: Annealing; Cryopreservation; Finite Elements Analysis; Glass Formation; Solid Mechanics; Solidification; Thermal Stress

References

  1. Cryobiology. 2007 Feb;54(1):44-54 - PubMed
  2. Cell Preserv Technol. 2007;5(2):104-115 - PubMed
  3. Cryobiology. 1984 Dec;21(6):637-53 - PubMed
  4. Med Eng Phys. 2007 Jul;29(6):661-70 - PubMed
  5. Cryogenics (Guildf). 2014 Jul;62:118-128 - PubMed
  6. Exp Mech. 2009 Oct;49(5):663-672 - PubMed
  7. Cryo Letters. 2005 Nov-Dec;26(6):409-11, author reply 412 - PubMed
  8. Cryobiology. 1997 Mar;34(2):183-92 - PubMed
  9. Cryobiology. 1996 Aug;33(4):459-64 - PubMed
  10. Cryobiology. 2006 Apr;52(2):284-94 - PubMed
  11. Cryobiology. 2006 Aug;53(1):75-95 - PubMed
  12. Cell Preserv Technol. 2005 Sep;3(3):169-183 - PubMed
  13. Exp Mech. 2007;47(3):1741-2765 - PubMed
  14. Ann Biomed Eng. 2007 Dec;35(12):2077-86 - PubMed
  15. Cryobiology. 2014 Jun;68(3):318-26 - PubMed
  16. Ann Biomed Eng. 2005 Sep;33(9):1213-28 - PubMed
  17. Nat Biotechnol. 2000 Mar;18(3):296-9 - PubMed
  18. Cryobiology. 1996 Apr;33(2):276-90 - PubMed
  19. J Biomech Eng. 2008 Apr;130(2):021006 - PubMed
  20. Cryo Letters. 2009 Nov-Dec;30(6):414-21 - PubMed
  21. Cryobiology. 2006 Apr;52(2):269-83 - PubMed
  22. Cryobiology. 2012 Oct;65(2):117-25 - PubMed
  23. Cryobiology. 1993 Oct;30(5):509-518 - PubMed
  24. J Microsc. 1982 Feb;125(Pt 2):177-86 - PubMed
  25. Cell Preserv Technol. 2005 Sep;3(3):184-200 - PubMed
  26. Cryobiology. 1983 Feb;20(1):36-40 - PubMed

Publication Types

Grant support