Display options
Share it on

Water Air Soil Pollut. 2015;226(3):68. doi: 10.1007/s11270-015-2298-5. Epub 2015 Feb 25.

Marine Tar Residues: a Review.

Water, air, and soil pollution

April M Warnock, Scott C Hagen, Davina L Passeri

Affiliations

  1. Communications, Radar and Sensing Group, SRI International, 2100 Commonwealth Boulevard, Ann Arbor, MI 48105 USA.
  2. Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 12800 Pegasus Blvd, Suite 211, Orlando, FL 32816-2450 USA.

PMID: 25741050 PMCID: PMC4339695 DOI: 10.1007/s11270-015-2298-5

Abstract

Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean environment indefinitely, decomposing or becoming buried in the sea floor. However, in many cases, they are transported ashore via currents and waves where they pose a concern to coastal recreation activities, the seafood industry and may have negative effects on wildlife. This review summarizes the current state of knowledge on marine tar residue formation, transport, degradation, and distribution. Methods of detection and removal of marine tar residues and their possible ecological effects are discussed, in addition to topics of marine tar research that warrant further investigation. Emphasis is placed on benthic tar residues, with a focus on the remnants of the Deepwater Horizon oil spill in particular, which are still affecting the northern Gulf of Mexico shores years after the leaking submarine well was capped.

Keywords: Marine tar; Oil spills; Tar balls; Tar mats

References

  1. Ecohealth. 2011 Dec;8(4):507-11 - PubMed
  2. Mar Pollut Bull. 2013 Jun 15;71(1-2):325-9 - PubMed
  3. Mar Pollut Bull. 2014 Mar 15;80(1-2):200-9 - PubMed
  4. Environ Toxicol Chem. 2002 Jul;21(7):1438-50 - PubMed
  5. Microbiol Rev. 1981 Mar;45(1):180-209 - PubMed
  6. Mar Pollut Bull. 2001 Dec;42(12 ):1357-66 - PubMed
  7. Chemosphere. 2004 May;55(7):1053-65 - PubMed
  8. Environ Sci Technol. 2013 Jul 2;47(13):7530-9 - PubMed
  9. Microbiol Rev. 1990 Sep;54(3):305-15 - PubMed
  10. Toxicol Pathol. 2012;40(2):315-20 - PubMed
  11. Mar Pollut Bull. 2007 Sep;54(9):1461-71 - PubMed
  12. Mar Pollut Bull. 2002 Mar;44(3):211-6 - PubMed
  13. Mar Pollut Bull. 2013 May 15;70(1-2):81-9 - PubMed
  14. Environ Sci Technol. 1995 Nov;29(11):2842-9 - PubMed
  15. Environ Sci Technol. 2011 May 15;45(10):4201-2 - PubMed
  16. Science. 2010 Oct 29;330(6004):634 - PubMed
  17. Science. 1971 Jul 30;173(3995):430-2 - PubMed
  18. J Hazard Mater. 2013 Apr 15;250-251:82-90 - PubMed
  19. Environ Pollut. 1991;71(1):17-30 - PubMed
  20. Mar Pollut Bull. 2002 Aug;44(8):770-80 - PubMed
  21. Mar Pollut Bull. 2006 Jul;52(7):778-89 - PubMed
  22. Environ Sci Technol. 1994 Sep 1;28(9):1733-46 - PubMed
  23. PLoS One. 2013 Jun 12;8(6):e65087 - PubMed
  24. Mar Pollut Bull. 2013 May 15;70(1-2):147-54 - PubMed
  25. Environ Sci Technol. 2013 May 7;47(9):4220-6 - PubMed
  26. Mar Pollut Bull. 2008 May;56(5):950-62 - PubMed
  27. Environ Toxicol Chem. 2006 May;25(5):1345-53 - PubMed
  28. Science. 1970 Apr 10;168(3928):245-6 - PubMed
  29. Mar Pollut Bull. 2003;47(9-12):415-22 - PubMed
  30. Science. 2003 Dec 19;302(5653):2082-6 - PubMed
  31. Environ Pollut. 1989;57(4):341-51 - PubMed
  32. Environ Sci Technol. 1995 Oct 1;29(10):2684-94 - PubMed
  33. Mar Pollut Bull. 2006;53(5-7):315-31 - PubMed
  34. Bull Environ Contam Toxicol. 1991 Nov;47(5):732-7 - PubMed
  35. Mar Pollut Bull. 2001 Jul-Dec;43(7-12):270-8 - PubMed

Publication Types