Display options
Share it on

Science. 2015 Feb 13;347(6223):737-43. doi: 10.1126/science.1261043.

Organic chemistry. A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis.

Science (New York, N.Y.)

Anat Milo, Andrew J Neel, F Dean Toste, Matthew S Sigman

Affiliations

  1. Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.
  2. Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, CA 94720, USA.
  3. Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, CA 94720, USA. [email protected] [email protected].
  4. Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA. [email protected] [email protected].

PMID: 25678656 PMCID: PMC4465137 DOI: 10.1126/science.1261043

Abstract

Knowledge of chemical reaction mechanisms can facilitate catalyst optimization, but extracting that knowledge from a complex system is often challenging. Here, we present a data-intensive method for deriving and then predictively applying a mechanistic model of an enantioselective organic reaction. As a validating case study, we selected an intramolecular dehydrogenative C-N coupling reaction, catalyzed by chiral phosphoric acid derivatives, in which catalyst-substrate association involves weak, noncovalent interactions. Little was previously understood regarding the structural origin of enantioselectivity in this system. Catalyst and substrate substituent effects were probed by means of systematic physical organic trend analysis. Plausible interactions between the substrate and catalyst that govern enantioselectivity were identified and supported experimentally, indicating that such an approach can afford an efficient means of leveraging mechanistic insight so as to optimize catalyst design.

Copyright © 2015, American Association for the Advancement of Science.

References

  1. Semin Hematol. 2008 Jul;45(3):135-40 - PubMed
  2. Chem Soc Rev. 2008 Feb;37(2):308-19 - PubMed
  3. Acc Chem Res. 2013 Apr 16;46(4):979-89 - PubMed
  4. J Am Chem Soc. 2013 Sep 25;135(38):14044-7 - PubMed
  5. Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20678-85 - PubMed
  6. Angew Chem Int Ed Engl. 2002 Apr 15;41(8):1335-8 - PubMed
  7. Science. 2011 Dec 23;334(6063):1681-4 - PubMed
  8. J Am Chem Soc. 2012 Aug 8;134(31):12928-31 - PubMed
  9. Chem Sci. 2014 Nov 1;5(11):4278-4282 - PubMed
  10. J Chem Phys. 2008 Sep 28;129(12):124710 - PubMed
  11. Acc Chem Res. 2009 Feb 17;42(2):335-44 - PubMed
  12. Science. 1982 Jul 30;217(4558):401-7 - PubMed
  13. Nature. 2014 Mar 13;507(7491):210-4 - PubMed
  14. Chem Rev. 2014 Sep 24;114(18):9047-153 - PubMed
  15. Science. 2013 Nov 29;342(6162):1076-80 - PubMed
  16. Science. 2015 Jan 2;347(6217):49-53 - PubMed
  17. Nat Chem. 2014 Oct;6(10):859-71 - PubMed
  18. Science. 2011 Nov 25;334(6059):1114-7 - PubMed
  19. J Am Chem Soc. 2008 Aug 20;130(33):10854-5 - PubMed
  20. Biofizika. 2013 May-Jun;58(3):461-7 - PubMed
  21. Chem Rev. 2011 Mar 9;111(3):1215-92 - PubMed
  22. J Phys Chem A. 2009 Feb 5;113(5):878-86 - PubMed
  23. J Phys Chem A. 2007 Nov 15;111(45):11683-700 - PubMed
  24. J Am Chem Soc. 2014 Dec 17;136(50):17386-9 - PubMed
  25. Acc Chem Res. 2013 Apr 16;46(4):1029-38 - PubMed
  26. Org Lett. 2007 Sep 13;9(19):3797-800 - PubMed
  27. Chem Rev. 2007 Dec;107(12):5744-58 - PubMed
  28. Acc Chem Res. 2013 Apr 16;46(4):927-36 - PubMed
  29. Acc Chem Res. 2013 Apr 16;46(4):1020-8 - PubMed
  30. Nat Chem. 2012 Mar 18;4(5):366-74 - PubMed
  31. Science. 2011 Sep 9;333(6048):1423-7 - PubMed
  32. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2179-83 - PubMed

Publication Types

Grant support