Display options
Share it on

Front Neurol. 2015 Mar 05;6:8. doi: 10.3389/fneur.2015.00008. eCollection 2015.

Data science of stroke imaging and enlightenment of the penumbra.

Frontiers in neurology

Fabien Scalzo, May Nour, David S Liebeskind

Affiliations

  1. Department of Neurology, Neurovascular Imaging Research Core, University of California Los Angeles , Los Angeles, CA , USA.

PMID: 25798125 PMCID: PMC4350425 DOI: 10.3389/fneur.2015.00008

Abstract

Imaging protocols of acute ischemic stroke continue to hold significant uncertainties regarding patient selection for reperfusion therapy with thrombolysis and mechanical thrombectomy. Given that patient inclusion criteria can easily introduce biases that may be unaccounted for, the reproducibility and reliability of the patient screening method is of utmost importance in clinical trial design. The optimal imaging screening protocol for selection in targeted populations remains uncertain. Acute neuroimaging provides a snapshot in time of the brain parenchyma and vasculature. By identifying the at-risk but still viable penumbral tissue, imaging can help estimate the potential benefit of a reperfusion therapy in these patients. This paper provides a perspective about the assessment of the penumbral tissue in the context of acute stroke and reviews several neuroimaging models that have recently been developed to assess the penumbra in a more reliable fashion. The complexity and variability of imaging features and techniques used in stroke will ultimately require advanced data driven software tools to provide quantitative measures of risk/benefit of recanalization therapy and help aid in making the most favorable clinical decisions.

Keywords: CT imaging; MRI imaging; acute stroke; cerebral ischemia; neuroimaging; neurology

References

  1. Interv Neurol. 2013 Sep;1(3-4):185-99 - PubMed
  2. Stroke. 2006 Jan;37(1):263-6 - PubMed
  3. Stroke. 1978 Mar-Apr;9(2):143-9 - PubMed
  4. N Engl J Med. 2013 Mar 7;368(10 ):914-23 - PubMed
  5. J Neurol Neurosurg Psychiatry. 2005 Sep;76(9):1222-8 - PubMed
  6. J Stroke Cerebrovasc Dis. 2013 Nov;22(8):1428-31 - PubMed
  7. N Engl J Med. 1995 Dec 14;333(24):1581-7 - PubMed
  8. Stroke. 2010 Aug;41(8):1728-35 - PubMed
  9. Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2096-104 - PubMed
  10. J Cereb Blood Flow Metab. 2007 Jan;27(1):196-204 - PubMed
  11. Magn Reson Imaging. 2001 Oct;19(8):1043-53 - PubMed
  12. Int J Stroke. 2015 Apr;10(3):439-48 - PubMed
  13. Stroke. 1981 Nov-Dec;12(6):723-5 - PubMed
  14. N Engl J Med. 2012 Mar 22;366(12 ):1099-107 - PubMed
  15. J Cereb Blood Flow Metab. 2010 Sep;30(9):1661-70 - PubMed
  16. J Cereb Blood Flow Metab. 2014 Feb;34(2):185-99 - PubMed
  17. Med Phys. 2009 Nov;36(11):5347-58 - PubMed
  18. Stroke. 1977 Jan-Feb;8(1):51-7 - PubMed
  19. Cerebrovasc Dis. 1999 Jul-Aug;9(4):193-201 - PubMed
  20. Int J Stroke. 2014 Jan;9(1):126-32 - PubMed
  21. Stroke. 1999 Aug;30(8):1591-7 - PubMed
  22. J Cereb Blood Flow Metab. 2005 Oct;25(10):1336-45 - PubMed
  23. J Neurosurg. 1981 Jun;54(6):773-82 - PubMed
  24. Ann Biomed Eng. 2012 Oct;40(10 ):2177-87 - PubMed
  25. Ann Neurol. 2002 Apr;51(4):417-32 - PubMed
  26. NMR Biomed. 2008 Oct;21(8):839-48 - PubMed
  27. Trials. 2014 Sep 01;15:343 - PubMed
  28. MMWR Morb Mortal Wkly Rep. 2012 May 25;61(20):379-82 - PubMed
  29. Stroke. 2009 Aug;40(8):2945-8 - PubMed
  30. J Cereb Blood Flow Metab. 2008 May;28(5):887-91 - PubMed
  31. Transl Stroke Res. 2012 Jun;3(2):188-97 - PubMed
  32. JAMA. 2004 Oct 20;292(15):1823-30 - PubMed
  33. J Cereb Blood Flow Metab. 1983 Mar;3(1):86-96 - PubMed
  34. Int J Stroke. 2015 Apr;10(3):429-38 - PubMed
  35. Stroke. 2013 Jan;44(1):73-9 - PubMed
  36. Ann Neurol. 1983 Sep;14(3):294-301 - PubMed
  37. Stroke. 2002 Aug;33(8):2025-31 - PubMed

Publication Types