Display options
Share it on

Clin Epigenetics. 2015 Mar 01;7:17. doi: 10.1186/s13148-015-0051-y. eCollection 2015.

Inter-locus as well as intra-locus heterogeneity in LINE-1 promoter methylation in common human cancers suggests selective demethylation pressure at specific CpGs.

Clinical epigenetics

Nicole Nüsgen, Wolfgang Goering, Albertas Dauksa, Arijit Biswas, Muhammad Ahmer Jamil, Ioanna Dimitriou, Amit Sharma, Heike Singer, Rolf Fimmers, Holger Fröhlich, Johannes Oldenburg, Antanas Gulbinas, Wolfgang A Schulz, Osman El-Maarri

Affiliations

  1. Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany.
  2. Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany.
  3. Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu g. 2, Kaunas, 50009 Lithuania.
  4. Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany ; Bonn-Aachen International Center for IT (B-IT) Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany.
  5. Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University of Bonn, Sigmund-Freud-Straße 25, D-53127 Bonn, Germany.
  6. Bonn-Aachen International Center for IT (B-IT) Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany.

PMID: 25798207 PMCID: PMC4367886 DOI: 10.1186/s13148-015-0051-y

Abstract

BACKGROUND: Hypomethylation of long interspersed element (LINE)-1 has been observed in tumorigenesis when using degenerate assays, which provide an average across all repeats. However, it is unknown whether individual LINE-1 loci or different CpGs within one specific LINE-1 promoter are equally affected by methylation changes. Conceivably, studying methylation changes at specific LINE-1 may be more informative than global assays for cancer diagnostics. Therefore, with the aim of mapping methylation at individual LINE-1 loci at single-CpG resolution and exploring the diagnostic potential of individual LINE-1 locus methylation, we analyzed methylation at 11 loci by pyrosequencing, next-generation bisulfite sequencing as well as global LINE-1 methylation in bladder, colon, pancreas, prostate, and stomach cancers compared to paired normal tissues and in blood samples from some of the patients compared to healthy donors.

RESULTS: Most (72/80) tumor samples harbored significant methylation changes at at least one locus. Notably, our data revealed not only the expected hypomethylation but also hypermethylation at some loci. Specific CpGs within the LINE-1 consensus sequence appeared preferentially hypomethylated suggesting that these could act as seeds for hypomethylation. In silico analysis revealed that these CpG sites more likely faced the histones in the nucleosome. Multivariate logistic regression analysis did not reveal a significant clinical advantage of locus-specific methylation markers over global methylation markers in distinguishing tumors from normal tissues.

CONCLUSIONS: Methylation changes at individual LINE-1 loci are heterogeneous, whereas specific CpGs within the consensus sequence appear to be more prone to hypomethylation. With a broader selection of loci, locus-specific LINE-1 methylation could become a tool for tumor detection.

Keywords: Bisulfite sequencing; Cancer; Cancer classification; DNA methylation; Global methylation; L1 loci; LINE-1; Methylation patterns; Pyrosequencing

References

  1. Nat Genet. 2011 Jun 26;43(8):768-75 - PubMed
  2. Br J Cancer. 2004 Aug 31;91(5):985-94 - PubMed
  3. J Mol Biol. 2007 Aug 17;371(3):649-68 - PubMed
  4. Cancer Prev Res (Phila). 2012 Dec;5(12):1345-57 - PubMed
  5. Genome Res. 2010 Sep;20(9):1279-87 - PubMed
  6. Cancer Epidemiol Biomarkers Prev. 2012 Jul;21(7):1143-8 - PubMed
  7. Nature. 2007 Sep 13;449(7159):248-51 - PubMed
  8. Nucleic Acids Res. 2010 Jul;38(12):3909-22 - PubMed
  9. Nature. 2010 Jul 15;466(7304):388-92 - PubMed
  10. Carcinogenesis. 2011 Oct;32(10):1484-92 - PubMed
  11. Nucleic Acids Res. 2002 Mar 15;30(6):e25 - PubMed
  12. Genome Biol. 2009;10(9):R100 - PubMed
  13. PLoS One. 2012;7(9):e45357 - PubMed
  14. Oncogene. 2012 Nov 29;31(48):5029-37 - PubMed
  15. PLoS Comput Biol. 2008 Aug 22;4(8):e1000134 - PubMed
  16. Methods Mol Biol. 2011;791:89-100 - PubMed
  17. Biochemistry. 1999 Jun 1;38(22):7008-18 - PubMed
  18. Int J Cancer. 2012 Mar 1;130(5):1151-9 - PubMed
  19. Genome Res. 2008 Jul;18(7):1051-63 - PubMed
  20. Front Oncol. 2013 Sep 26;3:255 - PubMed
  21. Gastric Cancer. 2013 Oct;16(4):480-7 - PubMed
  22. Lancet Oncol. 2008 Apr;9(4):312-3 - PubMed
  23. Hum Mol Genet. 2012 Jan 1;21(1):219-35 - PubMed
  24. J Mol Med (Berl). 2012 Jul;90(7):827-35 - PubMed
  25. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  26. Br J Cancer. 1999 Jul;80(9):1312-21 - PubMed
  27. PLoS One. 2014 Oct 02;9(10):e109478 - PubMed
  28. PLoS One. 2012;7(4):e34615 - PubMed
  29. Nucleic Acids Res. 2008 Oct;36(17):5704-12 - PubMed
  30. J Biomed Biotechnol. 2006;2006(1):83672 - PubMed
  31. Br J Cancer. 2012 Jan 31;106(3):585-91 - PubMed
  32. Nature. 2009 Mar 19;458(7236):362-6 - PubMed
  33. Science. 2012 Aug 24;337(6097):967-71 - PubMed
  34. Genome Res. 2011 Jul;21(7):1028-41 - PubMed
  35. Nucleic Acids Res. 2013 Mar 1;41(5):2918-31 - PubMed
  36. Cell. 2008 Oct 3;135(1):23-35 - PubMed
  37. Nucleic Acids Res. 2011 May;39(10):4099-108 - PubMed
  38. Curr Mol Med. 2011 Jun;11(4):286-303 - PubMed
  39. Hum Genet. 2007 Dec;122(5):505-14 - PubMed
  40. Nucleic Acids Res. 2011 Aug;39(15):6741-52 - PubMed
  41. PLoS One. 2011 Jan 19;6(1):e16252 - PubMed
  42. Nature. 2001 Feb 15;409(6822):860-921 - PubMed

Publication Types