Display options
Share it on

World J Stem Cells. 2015 Jan 26;7(1):75-83. doi: 10.4252/wjsc.v7.i1.75.

In vivo imaging of endogenous neural stem cells in the adult brain.

World journal of stem cells

Maria Adele Rueger, Michael Schroeter

Affiliations

  1. Maria Adele Rueger, Michael Schroeter, Department of Neurology, University Hospital of Cologne, 50924 Cologne, Germany.

PMID: 25621107 PMCID: PMC4300938 DOI: 10.4252/wjsc.v7.i1.75

Abstract

The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3'-deoxy-3'-[(18)F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting.

Keywords: 3’-deoxy-3’-[18F]fluoro-L-thymidine; Magnetic resonance imaging; Neural stem cells; Positron emission tomography; [11C]PK11195

References

  1. J Neurosci. 1984 Jun;4(6):1429-41 - PubMed
  2. Stroke. 1986 Mar-Apr;17(2):246-53 - PubMed
  3. Cancer Res. 2007 Feb 15;67(4):1706-15 - PubMed
  4. J Neurosci. 1997 Aug 1;17(15):5820-9 - PubMed
  5. Neuron. 1993 Jul;11(1):173-89 - PubMed
  6. J Neurosci. 1998 Oct 1;18(19):7768-78 - PubMed
  7. Neuroimage. 2006 Sep;32(3):1150-7 - PubMed
  8. Stroke. 2007 Jan;38(1):153-61 - PubMed
  9. Neuroimage. 2010 Feb 1;49(3):2094-103 - PubMed
  10. J Neurochem. 2005 Jan;92(2):264-82 - PubMed
  11. Neuron. 2006 Jul 20;51(2):187-99 - PubMed
  12. PLoS One. 2012;7(9):e44466 - PubMed
  13. Front Neurosci. 2011 May 09;5:67 - PubMed
  14. J Cereb Blood Flow Metab. 2002 Mar;22(3):299-307 - PubMed
  15. J Neurosci. 2006 Mar 22;26(12):3182-91 - PubMed
  16. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18117-22 - PubMed
  17. BMC Neurosci. 2008 Feb 29;9:31 - PubMed
  18. J Comp Neurol. 1965 Jun;124(3):319-35 - PubMed
  19. J Clin Invest. 2010 Jan;120(1):29-40 - PubMed
  20. Int J Biochem Cell Biol. 2010 Mar;42(3):421-4 - PubMed
  21. Nat Neurosci. 2014 Jun;17(6):801-3 - PubMed
  22. Ann Neurol. 2003 Feb;53(2):259-63 - PubMed
  23. Neuroimage. 2012 Aug 1;62(1):367-80 - PubMed
  24. Nat Neurosci. 2008 Aug;11(8):901-7 - PubMed
  25. Neuron. 2011 May 26;70(4):687-702 - PubMed
  26. Eur J Neurosci. 2002 Sep;16(6):1045-57 - PubMed
  27. J Neurosci. 2007 Mar 7;27(10):2596-605 - PubMed
  28. J Neuroimmunol. 2007 Mar;184(1-2):53-68 - PubMed
  29. Cell. 1999 Jun 11;97(6):703-16 - PubMed
  30. Nature. 1989 Aug 10;340(6233):471-3 - PubMed
  31. Neuroreport. 2000 Jun 26;11(9):1991-6 - PubMed
  32. Gene Ther. 2011 Jun;18(6):594-605 - PubMed
  33. Neuroscience. 2012 Jul 26;215:174-83 - PubMed
  34. Arch Neurol. 2008 Apr;65(4):452-6 - PubMed
  35. Mol Cell Neurosci. 2006 Jan;31(1):149-60 - PubMed
  36. Curr Opin Neurobiol. 2013 Dec;23(6):935-42 - PubMed
  37. Neurobiol Dis. 2014 Sep;69:144-55 - PubMed
  38. Neuroscience. 2001;105(1):33-41 - PubMed
  39. J Neurosci. 2010 May 5;30(18):6454-60 - PubMed
  40. Science. 1992 Mar 27;255(5052):1707-10 - PubMed
  41. Stroke. 2000 Jul;31(7):1735-43 - PubMed
  42. Magn Reson Med. 2006 Feb;55(2):242-9 - PubMed
  43. Nature. 2005 Oct 6;437(7060):894-7 - PubMed
  44. Nature. 2006 Aug 17;442(7104):823-6 - PubMed
  45. Cell. 2002 Aug 23;110(4):429-41 - PubMed
  46. Adv Exp Med Biol. 2002;513:87-113 - PubMed
  47. Stem Cells. 2008 Sep;26(9):2382-90 - PubMed
  48. Nature. 1985 Jan 17-23;313(5999):223-5 - PubMed
  49. Neuroimage. 2009 Feb 1;44(3):671-8 - PubMed
  50. J Neuroimmunol. 1994 Dec;55(2):195-203 - PubMed
  51. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4710-5 - PubMed
  52. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2074-7 - PubMed
  53. J Neurosci. 1985 Dec;5(12):3310-28 - PubMed
  54. Science. 2007 Nov 9;318(5852):980-5 - PubMed
  55. Stroke. 2009 Mar;40(3 Suppl):S143-5 - PubMed
  56. Stem Cell Res Ther. 2014 Sep 26;5(4):100 - PubMed
  57. Nature. 1990 Oct 25;347(6295):762-5 - PubMed
  58. Stem Cell Rev. 2014 Aug;10(4):539-47 - PubMed
  59. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13570-5 - PubMed
  60. Eur J Neurosci. 2007 Feb;25(4):1006-22 - PubMed
  61. Nat Med. 2002 Sep;8(9):963-70 - PubMed
  62. Neuroimage. 2010 Apr 1;50(2):456-64 - PubMed
  63. Mol Imaging. 2010 Feb;9(1):40-6 - PubMed
  64. J Nucl Med. 2005 Dec;46(12 ):1948-58 - PubMed
  65. Nat Biotechnol. 2002 Nov;20(11):1103-10 - PubMed
  66. Mol Imaging. 2008 Jan-Feb;7(1):28-34 - PubMed
  67. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16267-72 - PubMed
  68. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9023-7 - PubMed
  69. BMC Nucl Med. 2007 Jul 03;7:3 - PubMed
  70. Eur J Neurosci. 2005 Jan;21(1):1-14 - PubMed
  71. Dev Biol. 1996 Jun 15;176(2):230-42 - PubMed
  72. BMC Neurosci. 2006 Sep 20;7:64 - PubMed
  73. Neuron. 1994 Nov;13(5):1071-82 - PubMed
  74. PLoS One. 2012;7(8):e43776 - PubMed
  75. Mol Imaging Biol. 2011 Jun;13(3):547-57 - PubMed
  76. Stem Cells. 2009 Feb;27(2):420-3 - PubMed
  77. Neuroimage. 2011 Aug 1;57(3):817-24 - PubMed
  78. J Cereb Blood Flow Metab. 2006 Jan;26(1):125-34 - PubMed
  79. Cell. 1990 Feb 23;60(4):585-95 - PubMed
  80. Neuroscience. 1999;89(4):1367-77 - PubMed
  81. Nat Rev Neurosci. 2007 Jan;8(1):57-69 - PubMed
  82. Rejuvenation Res. 2011 Aug;14(4):371-81 - PubMed
  83. Stem Cells. 2006 Mar;24(3):739-47 - PubMed
  84. Blood. 1997 Dec 15;90(12):5002-12 - PubMed
  85. FASEB J. 2005 Nov;19(13):1839-41 - PubMed
  86. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):343-7 - PubMed
  87. Stroke. 2004 Apr;35(4):952-7 - PubMed
  88. Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11866-72 - PubMed
  89. Neuroimage. 2009 Feb 15;44(4):1239-46 - PubMed
  90. Nat Neurosci. 2007 Nov;10(11):1387-94 - PubMed
  91. Acta Neuropathol. 2001 May;101(5):440-8 - PubMed
  92. Neuroimage. 2004 Jan;21(1):311-7 - PubMed
  93. J Cereb Blood Flow Metab. 2009 Jun;29(6):1216-25 - PubMed
  94. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14720-5 - PubMed
  95. Stem Cell Rev. 2010 Jun;6(2):317-33 - PubMed
  96. Nat Med. 1998 Nov;4(11):1334-6 - PubMed

Publication Types