Display options
Share it on

Pulm Circ. 2014 Sep;4(3):496-503. doi: 10.1086/677364.

Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure.

Pulmonary circulation

Marianne T Neary, Joseph M Neary, Gretchen K Lund, Timothy N Holt, Franklyn B Garry, Timothy J Mohun, Ross A Breckenridge

Affiliations

  1. Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom ; These two authors contributed equally to the work.
  2. Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA ; These two authors contributed equally to the work.
  3. Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
  4. Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom.
  5. Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom ; Division of Medicine, University College London, London, United Kingdom.

PMID: 25621163 PMCID: PMC4278609 DOI: 10.1086/677364

Abstract

Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension.

Keywords: MYH15; cattle; genetic polymorphism; high altitude; hypoxia; myosin heavy chain; pulmonary hypertension

References

  1. N Engl J Med. 2001 Aug 2;345(5):319-24 - PubMed
  2. J Genet Genomics. 2007 Aug;34(8):720-9 - PubMed
  3. Cell. 2006 Nov 3;127(3):635-48 - PubMed
  4. Cerebrovasc Dis. 2009;28(5):499-504 - PubMed
  5. Mol Biol Evol. 2004 Jun;21(6):1042-56 - PubMed
  6. J Anim Sci. 2008 Apr;86(4):815-9 - PubMed
  7. J Invest Dermatol. 1991 Oct;97(4):634-7 - PubMed
  8. Mitochondrion. 2011 May;11(3):497-503 - PubMed
  9. Genome Biol. 2009;10(10):R113 - PubMed
  10. Nat Genet. 2000 Sep;26(1):81-4 - PubMed
  11. High Alt Med Biol. 2006 Summer;7(2):150-67 - PubMed
  12. Mol Cell Proteomics. 2012 Aug;11(8):492-500 - PubMed
  13. Nature. 1998 Jan 29;391(6666):489-92 - PubMed
  14. Pharmacol Ther. 2004 Feb;101(2):183-92 - PubMed
  15. J Am Vet Med Assoc. 1976 Sep 1;169(5):515-7 - PubMed
  16. Thorax. 1986 Sep;41(9):696-700 - PubMed
  17. J Vet Diagn Invest. 2012 Sep;24(5):867-77 - PubMed
  18. J Mol Evol. 2009 Apr;68(4):293-310 - PubMed
  19. Pulm Circ. 2011 Oct-Dec;1(4):462-9 - PubMed
  20. J Appl Physiol. 1975 Mar;38(3):491-4 - PubMed
  21. Am J Med. 1962 Feb;32:171-83 - PubMed
  22. Forensic Sci Int. 2008 Nov 20;182(1-3):1-12 - PubMed
  23. Biochem Biophys Res Commun. 2003 Apr 18;303(4):1024-7 - PubMed
  24. Mol Biol Evol. 2002 Apr;19(4):375-93 - PubMed
  25. J Biol Chem. 2003 Jun 20;278(25):22600-8 - PubMed
  26. Dis Model Mech. 2013 Mar;6(2):503-7 - PubMed
  27. BMC Genomics. 2008 Mar 04;9:119 - PubMed
  28. Epigenetics. 2010 May 16;5(4):293-6 - PubMed
  29. Genet Med. 2007 Oct;9(10):682-9 - PubMed
  30. Am J Epidemiol. 2007 Jul 1;166(1):28-35 - PubMed
  31. Ciba Found Symp. 1991;157:194-207; discussion 207-11 - PubMed
  32. Arch Dis Child. 1998 Dec;79(6):506-9 - PubMed
  33. Cardiovasc Res. 1974 Nov;8(6):745-9 - PubMed
  34. PLoS One. 2013;8(2):e56411 - PubMed
  35. J Muscle Res Cell Motil. 2007;28(7-8):409-14 - PubMed
  36. Vet Clin North Am Food Anim Pract. 2007 Nov;23(3):575-96, vii - PubMed
  37. Chest. 2003 Jan;123(1):54-8 - PubMed
  38. Genome Biol. 2007;8(11):R250 - PubMed
  39. Pediatr Res. 2013 Oct;74(4):375-9 - PubMed
  40. J Physiol. 2010 Jan 15;588(Pt 2):353-64 - PubMed
  41. Am J Physiol Lung Cell Mol Physiol. 2009 Dec;297(6):L1013-32 - PubMed
  42. Genet Mol Res. 2010 Jan 26;9(1):144-50 - PubMed
  43. J Mol Biol. 2004 Feb 6;336(1):9-24 - PubMed
  44. Proc Am Thorac Soc. 2006 Jul;3(5):413-7 - PubMed

Publication Types