Display options
Share it on

Front Microbiol. 2015 Mar 11;6:171. doi: 10.3389/fmicb.2015.00171. eCollection 2015.

Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study.

Frontiers in microbiology

Andreas Dix, Kerstin Hünniger, Michael Weber, Reinhard Guthke, Oliver Kurzai, Jörg Linde

Affiliations

  1. Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany.
  2. Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany.

PMID: 25814982 PMCID: PMC4356159 DOI: 10.3389/fmicb.2015.00171

Abstract

Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97%) for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83%) for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

Keywords: decision tree based methods; feature selection; fungal pathogens; immune response; microarray; systems biology

References

  1. J Leukoc Biol. 2003 Nov;74(5):916-22 - PubMed
  2. Mol Med. 2007 Sep-Oct;13(9-10):495-508 - PubMed
  3. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 - PubMed
  4. Crit Care Med. 2010 Oct;38(10):1955-61 - PubMed
  5. Bioinformatics. 2007 Oct 1;23(19):2507-17 - PubMed
  6. BMC Bioinformatics. 2009 Feb 03;10:48 - PubMed
  7. Med Klin Intensivmed Notfmed. 2013 May;108(4):311-8 - PubMed
  8. Clin Microbiol Infect. 2009 Jun;15(6):544-51 - PubMed
  9. PLoS One. 2009 Jul 07;4(7):e6162 - PubMed
  10. Intensive Care Med. 2007 Apr;33(4):606-18 - PubMed
  11. Mol Gen Genet. 1984;198(2):179-82 - PubMed
  12. BMC Bioinformatics. 2006 Jan 06;7:3 - PubMed
  13. Genome Biol. 2004;5(10):R80 - PubMed
  14. Intensive Care Med. 2010 Jan;36(1):49-56 - PubMed
  15. J Immunol. 2009 Dec 15;183(12):7984-93 - PubMed
  16. Int J Med Microbiol. 2014 Jul;304(5-6):592-6 - PubMed
  17. Expert Rev Anti Infect Ther. 2012 Jun;10(6):701-6 - PubMed
  18. Int J Microbiol. 2012;2012:363764 - PubMed
  19. BMC Med Genomics. 2009 Aug 05;2:49 - PubMed
  20. Biochem Biophys Res Commun. 1999 Jun 16;259(3):550-6 - PubMed
  21. Ann Surg. 2007 Apr;245(4):611-21 - PubMed
  22. Genome Biol. 2009;10(11):R127 - PubMed
  23. Intensive Care Med. 2010 Feb;36(2):241-7 - PubMed
  24. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1604-9 - PubMed
  25. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 - PubMed
  26. J Infect Dis. 2003 May 15;187(10):1544-51 - PubMed
  27. Amino Acids. 2013 Jan;44(1):189-97 - PubMed
  28. Nat Rev Immunol. 2008 Oct;8(10):776-87 - PubMed
  29. Bioinformatics. 2008 Jul 1;24(13):1547-8 - PubMed
  30. Science. 2007 Apr 27;316(5824):608-11 - PubMed
  31. N Engl J Med. 2003 Apr 17;348(16):1546-54 - PubMed
  32. PLoS Comput Biol. 2014 Feb 20;10(2):e1003479 - PubMed
  33. PLoS Pathog. 2011 May;7(5):e1002027 - PubMed
  34. Immunol Lett. 2006 Jul 15;106(1):63-71 - PubMed
  35. J Biol Chem. 2013 Jun 7;288(23 ):16225-34 - PubMed
  36. Nat Genet. 2000 May;25(1):25-9 - PubMed
  37. J Leukoc Biol. 2002 Dec;72(6):1190-7 - PubMed
  38. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6562-6 - PubMed
  39. Crit Care Med. 2006 Jun;34(6):1589-96 - PubMed
  40. Crit Care. 2010;14(1):R15 - PubMed
  41. Shock. 2004 Jul;22(1):29-33 - PubMed
  42. Nature. 2006 Oct 19;443(7113):818-22 - PubMed
  43. Int Immunopharmacol. 2012 Aug;13(4):454-60 - PubMed
  44. Physiol Genomics. 2009 Apr 10;37(2):133-9 - PubMed

Publication Types