Display options
Share it on

Front Microbiol. 2015 Mar 12;6:182. doi: 10.3389/fmicb.2015.00182. eCollection 2015.

Association of blaOXA-23 and bap with the persistence of Acinetobacter baumannii within a major healthcare system.

Frontiers in microbiology

Ting L Luo, Alexander H Rickard, Usha Srinivasan, Keith S Kaye, Betsy Foxman

Affiliations

  1. Department of Epidemiology, School of Public Health, University of Michigan Ann Arbor, MI, USA.
  2. Division of Infectious Diseases, Wayne State University Detroit, MI, USA.

PMID: 25814985 PMCID: PMC4357298 DOI: 10.3389/fmicb.2015.00182

Abstract

OBJECTIVES: Acinetobacter baumannii is an emerging opportunistic nosocomial pathogen. Two factors that may enhance persistence in healthcare settings are antimicrobial resistance and biofilm-forming ability. The aim of this work was to determine whether A. baumannii isolates that persist in healthcare settings (endemic), can be differentiated from sporadic isolates based upon their ability to resist antibiotics and their biofilm-forming capability.

METHODS: Two hundred and ninety A. baumannii isolates were isolated over 17 months in the Detroit Medical Center (DMC). The isolates were genotyped using repetitive extragenic palindromic-PCR (REP-PCR). REP-types appearing greater than 10 times during active surveillance were considered endemic. The in vitro biofilm-forming ability and antibiotic resistance profile of each isolate were evaluated. Isolates were tested for the presence of two genetic markers-one implicated in biofilm formation (bap) and the other in antibiotic resistance (blaOXA-23).

RESULTS: Of the 290 isolates evaluated, 84% carried bap and 36% carried blaOXA-23 . Five unique REP-PCR banding-types were detected >10 times (endemic) and constituted 58% of the 290 isolates. These five endemic REP-PCR types were 5.1 times more likely than sporadic isolates to carry both bap and blaOXA-23 . Furthermore, endemic isolates were resistant to 3 more antibiotic classes, on average, than sporadic isolates and four of the five endemic REP-PCR types formed denser biofilms in vitro than sporadic isolates.

CONCLUSIONS: Endemic A. baumannii isolates are more likely than sporadic isolates to possess factors that increase virulence and enhance survival within a large healthcare system.

Keywords: OXA-23; REP-PCR; antibiotic resistance; bap; biofilms; molecular epidemiology

References

  1. Methods Mol Biol. 2014;1149:631-41 - PubMed
  2. J Clin Dent. 2011;22(6):187-94 - PubMed
  3. J Bacteriol. 2008 May;190(9):3386-92 - PubMed
  4. Infect Control Hosp Epidemiol. 2001 May;22(5):284-8 - PubMed
  5. J Clin Microbiol. 1996 May;34(5):1193-202 - PubMed
  6. J Bacteriol. 2008 Feb;190(3):1036-44 - PubMed
  7. J Clin Microbiol. 2007 May;45(5):1551-5 - PubMed
  8. J Infect Dev Ctries. 2012 Apr 13;6(4):311-6 - PubMed
  9. Biochem Biophys Res Commun. 2006 Sep 1;347(3):747-51 - PubMed
  10. BMC Bioinformatics. 2012 Jan 13;13:9 - PubMed
  11. Clin Microbiol Infect. 2007 Aug;13(8):816-9 - PubMed
  12. Trends Microbiol. 2005 Jan;13(1):7-10 - PubMed
  13. Indian J Med Microbiol. 2008 Oct-Dec;26(4):333-7 - PubMed
  14. Clin Microbiol Infect. 2011 Dec;17(12):1811-6 - PubMed
  15. Clin Microbiol Rev. 2002 Apr;15(2):167-93 - PubMed
  16. Appl Environ Microbiol. 2013 Nov;79(21):6535-43 - PubMed
  17. Semin Respir Crit Care Med. 2015 Feb;36(1):85-98 - PubMed
  18. Chem Biol. 2013 Sep 19;20(9):1107-15 - PubMed
  19. Clin Microbiol Rev. 2008 Jul;21(3):538-82 - PubMed
  20. J Vis Exp. 2011 Jan 30;(47):null - PubMed
  21. Antimicrob Agents Chemother. 2010 Jan;54(1):578-9 - PubMed
  22. J Appl Microbiol. 2004;96(1):177-84 - PubMed
  23. Biotechnol J. 2013 Jan;8(1):97-109 - PubMed
  24. Curr Infect Dis Rep. 2001 Oct;3(5):440-444 - PubMed
  25. J Med Microbiol. 1996 Jun;44(6):482-9 - PubMed
  26. Can J Microbiol. 2012 Mar;58(3):311-7 - PubMed
  27. Nat Rev Microbiol. 2006 Aug;4(8):629-36 - PubMed
  28. FEMS Immunol Med Microbiol. 2011 Aug;62(3):328-38 - PubMed
  29. Mol Microbiol. 1998 May;28(3):449-61 - PubMed
  30. Clin Microbiol Infect. 2008 Mar;14(3):276-8 - PubMed
  31. Am J Med. 2006 Jun;119(6 Suppl 1):S53-61; discussion S62-70 - PubMed
  32. Antimicrob Agents Chemother. 2015 Jan;59(1):698-701 - PubMed
  33. Appl Environ Microbiol. 1985 Jan;49(1):1-7 - PubMed
  34. Microbes Infect. 2006 Jun;8(7):1891-7 - PubMed
  35. J Clin Microbiol. 2005 May;43(5):2241-5 - PubMed
  36. Antimicrob Agents Chemother. 2006 Feb;50(2):756-8 - PubMed
  37. J Clin Microbiol. 2003 Jul;41(7):3403-6 - PubMed
  38. BMC Microbiol. 2014 Mar 12;14:62 - PubMed
  39. Clin Microbiol Infect. 2000 Dec;6(12):635-43 - PubMed
  40. Ann Intern Med. 1978 Nov;89(5 Pt 2 Suppl):793-5 - PubMed
  41. J Glob Infect Dis. 2010 Sep;2(3):291-304 - PubMed
  42. Dent Implantol Update. 2011 Jul;22(7):54 - PubMed
  43. Antimicrob Resist Infect Control. 2013 Nov 18;2:31 - PubMed
  44. Infect Immun. 2012 Jan;80(1):228-33 - PubMed
  45. Infection. 2009 Oct;37(5):474-6 - PubMed
  46. Antimicrob Agents Chemother. 2010 May;54(5):2235-8 - PubMed
  47. J Med Microbiol. 2006 Dec;55(Pt 12):1619-29 - PubMed
  48. Clin Infect Dis. 2008 Apr 15;46(8):1254-63 - PubMed
  49. Chemotherapy. 2011;57(1):77-84 - PubMed

Publication Types