Display options
Share it on

J Diabetes Investig. 2015 Mar;6(2):140-9. doi: 10.1111/jdi.12272. Epub 2014 Sep 11.

Therapeutic efficacy of bone marrow-derived mononuclear cells in diabetic polyneuropathy is impaired with aging or diabetes.

Journal of diabetes investigation

Masaki Kondo, Hideki Kamiya, Tatsuhito Himeno, Keiko Naruse, Eitaro Nakashima, Atsuko Watarai, Taiga Shibata, Takahiro Tosaki, Jiro Kato, Tetsuji Okawa, Yoji Hamada, Ken-Ichi Isobe, Yutaka Oiso, Jiro Nakamura

Affiliations

  1. Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan ; Department of Immunology, Nagoya University Graduate School of Medicine Nagoya, Japan.
  2. Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan ; Department of CKD Initiatives, Nagoya University Graduate School of Medicine Nagoya, Japan.
  3. Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan.
  4. Department of Metabolic Medicine, Nagoya University Graduate School of Medicine Nagoya, Japan.
  5. Department of Immunology, Nagoya University Graduate School of Medicine Nagoya, Japan.

PMID: 25802721 PMCID: PMC4364848 DOI: 10.1111/jdi.12272

Abstract

AIMS/INTRODUCTION: Recent studies have shown that cell transplantation therapies, such as endothelial precursor cells, bone marrow-derived mononuclear cells (BM-MNCs) and mesenchymal stem cells, are effective on diabetic polyneuropathy through ameliorating impaired nerve blood flow in diabetic rats. Here, we investigated the effects of BM-MNCs transplantation in diabetic polyneuropathy using BM-MNCs derived from adult (16-week-old) diabetic (AD), adult non-diabetic (AN) or young (8-week-old) non-diabetic (YN) rats.

MATERIALS AND METHODS: BM-MNCs of AD and AN were isolated after an 8-week diabetes duration. The BM-MNCs were characterized using flow cytometry analysis of cell surface markers and reverse transcription polymerase chain reaction of several cytokines. BM-MNCs or saline were injected into hind limb muscles. Four weeks later, the thermal plantar test, nerve conduction velocity, blood flow of the sciatic nerve and capillary-to-muscle fiber ratio were evaluated.

RESULTS: The number of CD29(+)/CD90(+) cells that host mesenchymal stem cells in BM-MNCs decreased in AD compared with AN or YN, and transcript expressions of basic fibroblast growth factor and nerve growth factor in BM-MNCs decreased in AD compared with AN or YN. Impaired thermal sensation, decreased blood flow of the sciatic nerve and delayed nerve conduction velocity in 8-week-diabetic rats were significantly ameliorated by BM-MNCs derived from YN, whereas BM-MNCs from AD or AN rats did not show any beneficial effect in these functional tests.

CONCLUSIONS: These results show that cytokine production abilities and the mesenchymal stem cell population of BM-MNCs would be modified by aging and metabolic changes in diabetes, and that these differences could explain the disparity of the therapeutic efficacy of BM-MNCs between young and adult or diabetic and non-diabetic patients in diabetic polyneuropathy.

Keywords: Aging; Diabetic polyneuropathy; Neurotrophic factors

References

  1. J Am Heart Assoc. 2012 Dec;1(6):e002238 - PubMed
  2. J Neurochem. 2008 Jan;104(2):491-9 - PubMed
  3. Diabetologia. 2001 Nov;44(11):1973-88 - PubMed
  4. Nat Rev Neurol. 2011 Sep 13;7(10):573-83 - PubMed
  5. Methods. 2001 Dec;25(4):402-8 - PubMed
  6. Atherosclerosis. 2012 Aug;223(2):269-77 - PubMed
  7. J Neurol Sci. 1989 Nov;93(2-3):231-7 - PubMed
  8. Diabetes. 2011 Apr;60(4):1286-94 - PubMed
  9. Int J Prev Med. 2012 Dec;3(12):827-38 - PubMed
  10. Stem Cells Int. 2012;2012:975871 - PubMed
  11. Arterioscler Thromb Vasc Biol. 2010 Jun;30(6):1143-50 - PubMed
  12. JAMA. 2000 Nov 1;284(17):2215-21 - PubMed
  13. Lancet. 2002 Aug 10;360(9331):427-35 - PubMed
  14. Diabetes. 1997 Sep;46 Suppl 2:S43-9 - PubMed
  15. J Clin Invest. 2008 Oct;118(10):3355-66 - PubMed
  16. Diabetes. 2006 May;55(5):1470-7 - PubMed
  17. Diabetes. 2005 Jun;54(6):1823-8 - PubMed
  18. Mol Ther. 2009 Nov;17 (11):1938-47 - PubMed
  19. Stroke. 1982 Jul-Aug;13(4):483-7 - PubMed
  20. Circulation. 2008 May 6;117(18):2340-50 - PubMed
  21. Exp Diabesity Res. 2003 Oct-Dec;4(4):271-85 - PubMed
  22. Brain. 2001 Nov;124(Pt 11):2319-34 - PubMed
  23. Cytometry A. 2012 Oct;81(10):856-64 - PubMed
  24. Prog Mol Biol Transl Sci. 2012;111:195-215 - PubMed
  25. Diabetes. 1998 Oct;47(10):1637-42 - PubMed
  26. J Diabetes Investig. 2011 Jan 24;2(1):18-32 - PubMed
  27. Diabet Med. 1996 Jul;13(7):679-81 - PubMed
  28. J Cereb Blood Flow Metab. 2006 Sep;26(9):1176-88 - PubMed
  29. Neuroscience. 2011 May 19;182:241-7 - PubMed
  30. Cytotherapy. 2006;8(4):315-7 - PubMed
  31. Diabetes Care. 2012 Sep;35(9):1891-3 - PubMed
  32. Blood. 2006 Dec 1;108(12):3938-44 - PubMed
  33. PLoS One. 2011;6(11):e27458 - PubMed
  34. J Vasc Surg. 2008 Dec;48(6 Suppl):53S-60S; discussion 60S - PubMed
  35. Mech Ageing Dev. 2008 Mar;129(3):163-73 - PubMed
  36. Circulation. 2001 Aug 28;104(9):1046-52 - PubMed
  37. Circ Res. 2004 Aug 20;95(4):354-63 - PubMed
  38. Lancet. 2012 Oct 13;380(9850):1283-5 - PubMed
  39. Diabetes Metab Res Rev. 2011 Oct;27(7):678-84 - PubMed
  40. PLoS One. 2012;7(10):e48061 - PubMed
  41. Diabetes. 1999 Oct;48(10):2090-5 - PubMed
  42. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  43. Diabetes. 2008 Nov;57(11):3099-107 - PubMed
  44. Ann Neurol. 2009 Apr;65(4):386-93 - PubMed
  45. Stem Cells. 2009 Jul;27(7):1686-96 - PubMed
  46. Physiol Genomics. 2012 Oct 2;44(19):925-33 - PubMed

Publication Types