Display options
Share it on

Mult Scler Relat Disord. 2013 Apr;2(2):124-32. doi: 10.1016/j.msard.2012.09.003. Epub 2012 Oct 24.

Quantification of blood-to-brain transfer rate in multiple sclerosis.

Multiple sclerosis and related disorders

Saeid Taheri, Gary A Rosenberg, Corey Ford

Affiliations

  1. Department of Radiology and Radiological Sciences, MSC 323, Medical University of South Carolina, Charleston, SC 29425-3230, United States. Electronic address: [email protected].
  2. Department of Neurology, Departments of Neurosciences, and Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87107, United States.
  3. Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87107, United States.

PMID: 25877634 PMCID: PMC4874521 DOI: 10.1016/j.msard.2012.09.003

Abstract

Blood-brain barrier (BBB) disruption visualized in lesions by MRI is a major biomarker of disease activity in multiple sclerosis (MS). However, in MS, destruction occurs to a variable extent in lesions as well as in gray matter (GM) and in the normal appearing white matter (NAWM). A method to quantify the BBB disruption in lesions as well as in non-lesion areas would be useful for assessment of MS progression and treatments. The objective of this study was to quantify the BBB transfer rate (Ki) in WM lesions, in the NAWM, and in the full-brain of MS patients. Thirteen MS patients with active lesions and 10 healthy controls with age and gender matching were recruited for full-brain and WM Ki studies. Dynamic contrast-enhanced MRI (DCEMRI) scans were conducted using T1 mapping with partial inversion recovery (TAPIR), a fast T1 mapping technique, following administration of a quarter-dose of the contrast agent Gadolinium-DTPA (Gd-DTPA). The Patlak modeling technique was used to derive a voxel-based map of Ki. In all patients contrast-enhanced lesions, quantified by Ki maps, were observed. Compared with controls, patients with MS exhibited an increase in mean Ki of the full-brain (P-value<0.05) but no significant difference in mean Ki of NAWM. The identified increase in full-brain Ki of MS patients suggests a global vascular involvement associated with MS disease. The lack of observed significant decrease in Ki in NAWM suggests lower involvement of WM vasculature than full-brain vasculature in MS. Ki maps constructed from time series data acquired by DCEMRI provide additional information about BBB that could be used for evaluation of vascular involvement in MS and monitoring treatment effectiveness.

Copyright © 2012 Elsevier B.V. All rights reserved.

Keywords: Blood–brain barrier; Dynamic contrast-enhanced magnetic resonance imaging; Fast T1 mapping; Gadolinium; Multiple sclerosis; Transfer rate

References

  1. Curr Drug Metab. 2012 Jan;13(1):50-60 - PubMed
  2. Mt Sinai J Med. 2011 Mar-Apr;78(2):258-67 - PubMed
  3. Ann Neurol. 2008 Sep;64(3):255-65 - PubMed
  4. Stroke. 2011 Aug;42(8):2158-63 - PubMed
  5. PLoS One. 2009 Aug 11;4(8):e6597 - PubMed
  6. Ann Neurol. 1996 Mar;39(3):285-94 - PubMed
  7. J Cereb Blood Flow Metab. 1985 Dec;5(4):584-90 - PubMed
  8. Antioxid Redox Signal. 2011 Sep 1;15(5):1285-303 - PubMed
  9. Mult Scler. 2001 Apr;7(2):75-82 - PubMed
  10. AJNR Am J Neuroradiol. 2000 May;21(5):891-9 - PubMed
  11. N Engl J Med. 2010 Feb 4;362(5):387-401 - PubMed
  12. AJNR Am J Neuroradiol. 2011 Mar;32(3):424-7 - PubMed
  13. Neurology. 2002 Apr 23;58(8):1147-53 - PubMed
  14. Mult Scler. 2007 Aug;13(7):884-94 - PubMed
  15. Magn Reson Med. 1990 Oct;16(1):117-31 - PubMed
  16. J Neuroimaging. 2013 Jul;23(3):441-4 - PubMed
  17. Brain. 2007 Aug;130(Pt 8):2186-98 - PubMed
  18. Top Magn Reson Imaging. 2006 Apr;17(2):89-106 - PubMed
  19. Neuroimage. 2001 Nov;14(5):1175-85 - PubMed
  20. AJNR Am J Neuroradiol. 2011 Aug;32(7):E134-8 - PubMed
  21. J Magn Reson Imaging. 2007 Jan;25(1):39-47 - PubMed
  22. Lancet Neurol. 2011 Jul;10(7):657-66 - PubMed
  23. Lancet Neurol. 2006 Feb;5(2):158-70 - PubMed
  24. Stroke. 2011 May;42(5):1345-50 - PubMed
  25. N Engl J Med. 2011 Dec 8;365(23):2188-97 - PubMed
  26. AJNR Am J Neuroradiol. 2009 Aug;30(7):1366-70 - PubMed
  27. Magn Reson Med. 2010 Jun;63(6):1502-9 - PubMed
  28. Neurology. 2001 Sep 25;57(6):1129-31 - PubMed
  29. N Engl J Med. 2006 Mar 2;354(9):899-910 - PubMed
  30. AJNR Am J Neuroradiol. 2008 Oct;29(9):1671-6 - PubMed
  31. Brain. 2002 Aug;125(Pt 8):1676-95 - PubMed
  32. Ann Neurol. 2011 Jul;70(1):1-2 - PubMed
  33. Eur J Epidemiol. 2009;24(5):225-30 - PubMed
  34. J Biol Chem. 2010 Dec 17;285(51):40019-27 - PubMed
  35. Acta Neurochir Suppl. 2003;86:35-7 - PubMed
  36. Magn Reson Med. 2003 Jun;49(6):1121-32 - PubMed
  37. Brain. 2008 Mar;131(Pt 3):e92 - PubMed
  38. J Neuropathol Exp Neurol. 2007 Apr;66(4):321-8 - PubMed
  39. Hepatology. 2003 Nov;38(5):1219-26 - PubMed
  40. J Neurol. 2007 Mar;254(3):306-14 - PubMed
  41. J Neurol Sci. 2011 Jul 15;306(1-2):167-9 - PubMed
  42. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):407-14 - PubMed
  43. Magn Reson Med. 2003 Aug;50(2):283-92 - PubMed
  44. Arch Neurol. 2008 Nov;65(11):1454-9 - PubMed
  45. Magn Reson Med. 2001 Jul;46(1):131-40 - PubMed
  46. J Neurol. 1999 Aug;246(8):728-30 - PubMed
  47. Neuropathol Appl Neurobiol. 2011 Dec;37(7):698-710 - PubMed
  48. J Neuroradiol. 2011 Jul;38(3):161-6 - PubMed
  49. Neurology. 2007 Apr 24;68(17):1390-401 - PubMed
  50. Magn Reson Med. 2011 Apr;65(4):1036-42 - PubMed
  51. Magn Reson Imaging. 2006 Oct;24(8):1039-49 - PubMed

Publication Types

Grant support