Display options
Share it on

Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0148.

The role of turbulence in coronal heating and solar wind expansion.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

Steven R Cranmer, Mahboubeh Asgari-Targhi, Mari Paz Miralles, John C Raymond, Leonard Strachan, Hui Tian, Lauren N Woolsey

Affiliations

  1. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA Laboratory for Atmospheric and Space Physics, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 8030, USA [email protected].
  2. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA.

PMID: 25848083 PMCID: PMC4394680 DOI: 10.1098/rsta.2014.0148

Abstract

Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona.

© 2015 The Author(s) Published by the Royal Society. All rights reserved.

Keywords: heliosphere; plasma physics; solar atmosphere; solar corona; solar wind; turbulence

References

  1. Philos Trans A Math Phys Eng Sci. 2012 Jul 13;370(1970):3217-40 - PubMed
  2. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed
  3. Philos Trans A Math Phys Eng Sci. 2008 Dec 13;366(1884):4489-500 - PubMed
  4. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed
  5. Phys Rev Lett. 2004 May 14;92(19):194501 - PubMed
  6. Philos Trans A Math Phys Eng Sci. 2006 Feb 15;364(1839):505-27 - PubMed
  7. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed
  8. Astrophys J. 2000 Mar 1;531(1):L79-L82 - PubMed
  9. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed
  10. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed
  11. Science. 2014 Oct 17;346(6207):1255711 - PubMed
  12. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed
  13. Nature. 2013 Jan 24;493(7433):501-3 - PubMed
  14. Phys Rev Lett. 1989 Oct 23;63(17):1807-1810 - PubMed
  15. Science. 2007 Dec 7;318(5856):1591-4 - PubMed
  16. Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041):null - PubMed

Publication Types