Display options
Share it on

Nat Chem. 2015 Apr;7(4):323-7. doi: 10.1038/nchem.2185. Epub 2015 Feb 23.

Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry.

Nature chemistry

Junpeng Wang, Tatiana B Kouznetsova, Zhenbin Niu, Mitchell T Ong, Hope M Klukovich, Arnold L Rheingold, Todd J Martinez, Stephen L Craig

Affiliations

  1. Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
  2. Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  3. Department of Chemistry, University of California, La Jolla, California 92093, USA.
  4. Department of Chemistry, Stanford University, Stanford, California 94305, USA.

PMID: 25803470 DOI: 10.1038/nchem.2185

Abstract

Forbidden reactions, such as those that violate orbital symmetry effects as captured in the Woodward-Hoffmann rules, remain an ongoing challenge for experimental characterization, because when the competing allowed pathway is available the reactions are intrinsically difficult to trigger. Recent developments in covalent mechanochemistry have opened the door to activating otherwise inaccessible reactions. Here we report single-molecule force spectroscopy studies of three mechanically induced reactions along both their symmetry-allowed and symmetry-forbidden pathways, which enables us to quantify just how 'forbidden' each reaction is. To induce reactions on the ~0.1 s timescale of the experiments, the forbidden ring-opening reactions of benzocyclobutene, gem-difluorocyclopropane and gem-dichlorocyclopropane require approximately 130 pN less, 560 pN more and 1,000 pN more force, respectively, than their corresponding allowed analogues. The results provide the first experimental benchmarks for mechanically induced forbidden reactions, and in some cases suggest revisions to prior computational predictions.

References

  1. Angew Chem Int Ed Engl. 2011 Jul 25;50(31):7105-8 - PubMed
  2. Science. 2010 Aug 27;329(5995):1057-60 - PubMed
  3. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7222-7 - PubMed
  4. Biophys J. 2003 Jul;85(1):5-15 - PubMed
  5. Nature. 1998 Dec 17;396(6712):661-4 - PubMed
  6. Nat Commun. 2013;4:2538 - PubMed
  7. J Am Chem Soc. 2009 May 13;131(18):6377-9 - PubMed
  8. Angew Chem Int Ed Engl. 2009;48(23):4190-3 - PubMed
  9. J Am Chem Soc. 2009 Aug 12;131(31):10818-9 - PubMed
  10. Nat Chem. 2013 Feb;5(2):110-4 - PubMed
  11. J Am Chem Soc. 2011 Mar 16;133(10):3222-5 - PubMed
  12. Angew Chem Int Ed Engl. 2010 Oct 4;49(41):7452-5 - PubMed
  13. J Am Chem Soc. 2010 Nov 17;132(45):15936-8 - PubMed
  14. Chemistry. 2009 Dec 14;15(48):13331-5 - PubMed
  15. Nat Nanotechnol. 2009 May;4(5):302-6 - PubMed
  16. Nature. 2007 Mar 22;446(7134):423-7 - PubMed
  17. Science. 1999 Mar 12;283(5408):1727-30 - PubMed
  18. J Am Chem Soc. 2012 Jun 13;134(23):9577-80 - PubMed
  19. ACS Nano. 2009 Jul 28;3(7):1628-45 - PubMed

Publication Types