Display options
Share it on

Carbon N Y. 2016 Feb 01;97:14-24. doi: 10.1016/j.carbon.2015.03.040.

Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology.

Carbon

Zhongying Wang, Daniel Tonderys, Susan E Leggett, Evelyn Kendall Williams, Mehrdad T Kiani, Ruben Spitz Steinberg, Yang Qiu, Ian Y Wong, Robert H Hurt

Affiliations

  1. School of Engineering, Brown University, Providence, RI 02912 ; Department of Chemistry, Brown University, Providence, RI 02912.
  2. School of Engineering, Brown University, Providence, RI 02912 ; Center for Biomedical Engineering, Brown University, Providence, RI 02912.
  3. School of Engineering, Brown University, Providence, RI 02912 ; Center for Biomedical Engineering, Brown University, Providence, RI 02912 ; Pathobiology Graduate Program, Brown University, Providence, RI 02912.
  4. School of Engineering, Brown University, Providence, RI 02912.
  5. School of Engineering, Brown University, Providence, RI 02912 ; Center for Biomedical Engineering, Brown University, Providence, RI 02912 ; Pathobiology Graduate Program, Brown University, Providence, RI 02912 ; Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI 02912.
  6. School of Engineering, Brown University, Providence, RI 02912 ; Center for Biomedical Engineering, Brown University, Providence, RI 02912 ; Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI 02912.

PMID: 25848137 PMCID: PMC4384125 DOI: 10.1016/j.carbon.2015.03.040

Abstract

Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices.

References

  1. Exp Cell Res. 2003 Apr 1;284(2):274-82 - PubMed
  2. Nat Mater. 2013 Apr;12(4):321-5 - PubMed
  3. Biomaterials. 2013 Mar;34(8):2017-23 - PubMed
  4. ACS Nano. 2010 Jun 22;4(6):3201-8 - PubMed
  5. ACS Nano. 2008 Mar;2(3):572-8 - PubMed
  6. Nat Nanotechnol. 2009 Sep;4(9):562-6 - PubMed
  7. Cytometry A. 2013 Feb;83(2):227-34 - PubMed
  8. J Control Release. 2014 Jan 10;173:75-88 - PubMed
  9. ACS Nano. 2014 Sep 23;8(9):9437-45 - PubMed
  10. Annu Rev Biomed Eng. 2012;14:113-28 - PubMed
  11. Tissue Eng Part C Methods. 2011 May;17(5):579-88 - PubMed
  12. J Cell Biol. 2012 Apr 30;197(3):351-60 - PubMed
  13. Biomaterials. 2013 Nov;34(35):8878-86 - PubMed
  14. Annu Rev Biomed Eng. 2013;15:155-76 - PubMed
  15. Adv Mater. 2013 Apr 24;25(16):2258-68 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):565-70 - PubMed
  17. Chem Rev. 1999 Jul 14;99(7):1823-1848 - PubMed
  18. Biomaterials. 2012 Jan;33(2):418-27 - PubMed
  19. Biomaterials. 1997 Dec;18(24):1573-83 - PubMed
  20. Adv Mater. 2014 Mar 19;26(11):1763-70 - PubMed
  21. Adv Mater. 2013 Mar 6;25(9):1337-41 - PubMed
  22. Nanoscale. 2014 Oct 21;6(20):11744-55 - PubMed
  23. ACS Nano. 2011 Jun 28;5(6):4670-8 - PubMed
  24. Biomaterials. 2010 Feb;31(6):1299-306 - PubMed
  25. Sci Rep. 2014 Oct 01;4:6492 - PubMed
  26. Angew Chem Int Ed Engl. 2009;48(30):5406-15 - PubMed
  27. ACS Nano. 2011 Sep 27;5(9):7334-41 - PubMed
  28. Nature. 2009 Feb 5;457(7230):706-10 - PubMed
  29. Science. 2015 Jan 9;347(6218):159-63 - PubMed
  30. Nano Lett. 2012 Apr 11;12(4):1996-2002 - PubMed
  31. Bioinformatics. 2011 Apr 15;27(8):1179-80 - PubMed
  32. Chem Rev. 2013 May 8;113(5):3407-24 - PubMed
  33. J Cell Sci. 2003 May 15;116(Pt 10):1881-92 - PubMed
  34. ACS Nano. 2010 Nov 23;4(11):6587-98 - PubMed
  35. Nat Rev Mol Cell Biol. 2014 Dec;15(12):813-24 - PubMed
  36. J Neurosci Methods. 2008 Sep 30;174(2):202-14 - PubMed
  37. Proc Math Phys Eng Sci. 2013 Mar 8;469(2151):20120742 - PubMed
  38. ACS Nano. 2011 Nov 22;5(11):8943-9 - PubMed
  39. Biomaterials. 2012 Oct;33(28):6626-33 - PubMed

Publication Types

Grant support