Display options
Share it on

Beilstein J Org Chem. 2015 Jan 30;11:184-91. doi: 10.3762/bjoc.11.19. eCollection 2015.

Synthesis of dinucleoside acylphosphonites by phosphonodiamidite chemistry and investigation of phosphorus epimerization.

Beilstein journal of organic chemistry

William H Hersh

Affiliations

  1. Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY 11367-1597, USA.

PMID: 25815068 PMCID: PMC4362088 DOI: 10.3762/bjoc.11.19

Abstract

The reaction of the diamidite, (iPr2N)2PH, with acyl chlorides proceeds with the loss of HCl to give the corresponding acyl diamidites, RC(O)P(N(iPr)2)2 (R = Me (7), Ph (9)), without the intervention of sodium to give a phosphorus anion. The structure of 9 was confirmed by single-crystal X-ray diffraction. The coupling of the diamidites 7 and 9 with 5'-O-DMTr-thymidine was carried out with N-methylimidazolium triflate as the activator to give the monoamidites 3'-O-(P(N(iPr)2)C(O)R)-5'-O-DMTr-thymidine, and further coupling with 3'-O-(tert-butyldimethylsilyl)thymidine was carried out with activation by pyridinium trifluoroacetate/N-methylimidazole. The new dinucleoside acylphosphonites could be further oxidized, hydrolyzed to the H-phosphonates, and sulfurized to give the known mixture of diastereomeric phosphorothioates. The goal of this work was the measurement of the barrier to inversion of the acylphosphonites, which was expected to be low by analogy to the low barrier found in acylphosphines. However, the barrier was found to be high as no epimerization was detected up to 150 °C, and consistent with this, density functional theory calculations give an inversion barrier of over 40 kcal/mol.

Keywords: DFT; NMR; acyl phosphite; acylphosphine; chiral; nucleic acids; oligonucleotides

References

  1. Nucleosides Nucleotides Nucleic Acids. 2000 Mar;19(3):533-43 - PubMed
  2. Bioorg Med Chem. 2000 Jan;8(1):275-84 - PubMed
  3. J Org Chem. 1999 Oct 29;64(22):8090-8097 - PubMed
  4. Chem Commun (Camb). 2004 Feb 7;(3):290-1 - PubMed
  5. Mini Rev Med Chem. 2006 Mar;6(3):319-30 - PubMed
  6. J Am Chem Soc. 2006 Apr 19;128(15):5251-61 - PubMed
  7. Curr Top Med Chem. 2007;7(7):695-713 - PubMed
  8. Chem Rev. 2007 Nov;107(11):4746-96 - PubMed
  9. J Org Chem. 2008 Jul 4;73(13):5029-38 - PubMed
  10. J Am Chem Soc. 2008 Nov 26;130(47):16031-7 - PubMed
  11. Magn Reson Chem. 2009 Apr;47(4):288-99 - PubMed
  12. J Org Chem. 2009 Mar 6;74(5):2197-9 - PubMed
  13. J Am Chem Soc. 2010 Mar 3;132(8):2775-83 - PubMed
  14. Magn Reson Chem. 2010 Dec;48 Suppl 1:S48-55 - PubMed
  15. Chem Soc Rev. 2011 Dec;40(12):5829-43 - PubMed
  16. Nucleosides Nucleotides Nucleic Acids. 2011 Sep;30(9):706-25 - PubMed
  17. Chem Biodivers. 2011 Sep;8(9):1642-81 - PubMed
  18. J Org Chem. 2012 Jan 6;77(1):1-4 - PubMed
  19. J Am Chem Soc. 1986 Apr 1;108(9):2461-2 - PubMed
  20. J Org Chem. 2012 Apr 20;77(8):3969-77 - PubMed
  21. J Org Chem. 2012 Jun 1;77(11):4968-79 - PubMed
  22. J Org Chem. 2012 Sep 21;77(18):7913-22 - PubMed
  23. Br J Clin Pharmacol. 2013 Aug;76(2):269-76 - PubMed
  24. Nat Med. 2013 Mar;19(3):252 - PubMed
  25. J Am Chem Soc. 2014 Jan 8;136(1):76-9 - PubMed
  26. Nucleic Acids Res. 2014 Apr;42(8):5378-89 - PubMed
  27. J Org Chem. 2014 Apr 18;79(8):3465-72 - PubMed
  28. Brain Res. 2014 Oct 10;1584:116-28 - PubMed
  29. J Org Chem. 2014 Jul 3;79(13):6172-8 - PubMed
  30. Nucleic Acids Res. 2014 Jul;42(13):8796-807 - PubMed
  31. J Pers Med. 2013 Aug 02;3(3):144-76 - PubMed
  32. Chem Rev. 1994 Jul 1;94(5):1339-1374 - PubMed
  33. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7706-10 - PubMed
  34. Science. 1993 Mar 12;259(5101):1564-70 - PubMed
  35. J Am Chem Soc. 1977 Jun 22;99(13):4504-6 - PubMed
  36. JAMA. 1998 Sep 9;280(10):871 - PubMed

Publication Types