Display options
Share it on

Skelet Muscle. 2015 Mar 18;5:8. doi: 10.1186/s13395-015-0032-z. eCollection 2015.

Retinoic acid promotes myogenesis in myoblasts by antagonizing transforming growth factor-beta signaling via C/EBPβ.

Skeletal muscle

Émilie Lamarche, Neena Lala-Tabbert, Angelo Gunanayagam, Catherine St-Louis, Nadine Wiper-Bergeron

Affiliations

  1. Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada.
  2. Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada.

PMID: 25878769 PMCID: PMC4397812 DOI: 10.1186/s13395-015-0032-z

Abstract

BACKGROUND: The effects of transforming growth factor-beta (TGFβ) are mediated by the transcription factors Smad2 and Smad3. During adult skeletal myogenesis, TGFβ signaling inhibits the differentiation of myoblasts, and this can be reversed by treatment with retinoic acid (RA). In mesenchymal stem cells and preadipocytes, RA treatment can function in a non-classical manner by stimulating the expression of Smad3. Smad3 can bind to and prevent the bzip transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) from binding DNA response elements in target promoters, thereby affecting cell differentiation. In skeletal muscle, C/EBPβ is highly expressed in satellite cells and myoblasts and is downregulated during differentiation. Persistent expression of C/EBPβ in myoblasts inhibits their differentiation.

METHODS: Using both C2C12 myoblasts and primary myoblasts, we examined the regulation of C/EBPβ expression and activity following treatment with TGFβ and RA.

RESULTS: We demonstrate that treatment with RA upregulates Smad3, but not Smad2 expression in myoblasts, and can partially rescue the block of differentiation induced by TGFβ. RA treatment reduces C/EBPβ occupancy of the Pax7 and Smad2 promoters and decreased their expression. RA also inhibits the TGFβ-mediated phosphorylation of Smad2, which may also contribute to its pro-myogenic activities. TGFβ treatment of C2C12 myoblasts stimulates C/EBPβ expression, which in turn can stimulate Pax7 and Smad2 expression, and inhibits myogenesis. Loss of C/EBPβ expression in myoblasts partially restores differentiation in the presence of TGFβ.

CONCLUSIONS: TGFβ acts, at least in part, to inhibit myogenesis by upregulating the expression of C/EBPβ, as treatment with RA or loss of C/EBPβ can partially rescue differentiation in TGFβ-treated cells. This work identifies a pro-myogenic role for Smad3, through the inhibition of C/EBPβ's actions in myoblasts, and reveals mechanisms of crosstalk between RA and TGFβ signaling pathways.

Keywords: C/EBPβ; Retinoic acid; Skeletal muscle; TGFβ-signaling

References

  1. Biochim Biophys Acta. 1999 Oct 28;1447(2-3):175-84 - PubMed
  2. Semin Nephrol. 2012 May;32(3):287-94 - PubMed
  3. Cell Signal. 2007 May;19(5):923-31 - PubMed
  4. J Cell Biol. 1986 Nov;103(5):1799-805 - PubMed
  5. Cell. 2003 Jun 13;113(6):685-700 - PubMed
  6. J Biol Chem. 1997 Oct 31;272(44):28107-15 - PubMed
  7. EMBO J. 2003 May 1;22(9):2135-45 - PubMed
  8. J Mol Biol. 2001 Jun 15;309(4):855-68 - PubMed
  9. Nature. 1997 Dec 4;390(6659):465-71 - PubMed
  10. Genes Dev. 2001 Nov 15;15(22):2950-66 - PubMed
  11. Methods. 2001 Dec;25(4):402-8 - PubMed
  12. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2703-8 - PubMed
  13. EMBO J. 2004 Apr 7;23(7):1557-66 - PubMed
  14. Mol Cell Biol. 2010 Feb;30(3):722-35 - PubMed
  15. Genome Res. 2002 Jun;12(6):996-1006 - PubMed
  16. Differentiation. 2011 Sep;82(2):57-65 - PubMed
  17. Circ Res. 2004 Mar 19;94(5):617-25 - PubMed
  18. Cell Res. 2011 Nov;21(11):1591-604 - PubMed
  19. Differentiation. 2009 Nov;78(4):195-204 - PubMed
  20. Oncogene. 2004 Sep 23;23(44):7416-29 - PubMed
  21. Mol Cancer. 2011 May 30;10:67 - PubMed
  22. Cell. 1996 Dec 27;87(7):1215-24 - PubMed
  23. PLoS One. 2010 Nov 30;5(11):e15511 - PubMed
  24. Am J Respir Cell Mol Biol. 2004 Aug;31(2):234-40 - PubMed
  25. J Immunol. 2008 Aug 15;181(4):2277-84 - PubMed
  26. Stem Cells. 2012 Dec;30(12):2619-30 - PubMed
  27. J Am Soc Nephrol. 2010 Sep;21(9):1477-87 - PubMed
  28. Blood. 2009 Oct 29;114(18):3890-8 - PubMed
  29. J Biol Chem. 2010 Apr 23;285(17):13274-84 - PubMed
  30. J Biol Chem. 2006 Dec 29;281(52):40412-9 - PubMed
  31. Arthritis Res Ther. 2011 Feb 15;13(1):R23 - PubMed
  32. Genes Immun. 2009 Mar;10(2):192-6 - PubMed
  33. Genes Dev. 2014 Aug 1;28(15):1641-6 - PubMed
  34. J Biol Chem. 2013 Jun 21;288(25):18546-60 - PubMed
  35. Exp Cell Res. 2015 Feb 15;331(2):292-308 - PubMed
  36. J Cell Biol. 2014 Oct 13;207(1):73-89 - PubMed
  37. Stem Cell Rev. 2012 Jun;8(2):482-93 - PubMed
  38. Cell. 2011 Oct 28;147(3):565-76 - PubMed
  39. Cancer Res. 2009 Jul 1;69(13):5321-30 - PubMed
  40. Cell Signal. 2013 Oct;25(10):2017-24 - PubMed
  41. Prostate. 2008 May 1;68(6):661-74 - PubMed
  42. Carcinogenesis. 2011 Nov;32(11):1578-88 - PubMed
  43. J Biol Chem. 1997 Oct 31;272(44):27678-85 - PubMed
  44. Science. 2002 Feb 8;295(5557):1079-82 - PubMed
  45. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8206-10 - PubMed
  46. EMBO J. 1999 Mar 1;18(5):1280-91 - PubMed
  47. Cell. 2003 May 16;113(4):483-94 - PubMed
  48. FEBS Lett. 2014 Aug 25;588(17):3030-7 - PubMed
  49. Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E90-102 - PubMed
  50. BMC Biol. 2009 Oct 08;7:67 - PubMed
  51. Mol Endocrinol. 2007 Sep;21(9):2124-35 - PubMed
  52. Nature. 1994 Aug 4;370(6488):341-7 - PubMed
  53. Biochem J. 2006 Jan 15;393(Pt 2):601-7 - PubMed
  54. J Biol Chem. 1990 Oct 25;265(30):18518-24 - PubMed

Publication Types