Display options
Share it on

Front Neurol. 2015 Mar 09;6:45. doi: 10.3389/fneur.2015.00045. eCollection 2015.

Long Non-Coding RNA Expression during Aging in the Human Subependymal Zone.

Frontiers in neurology

Guy Barry, Boris Guennewig, Samantha Fung, Dominik Kaczorowski, Cynthia Shannon Weickert

Affiliations

  1. Garvan Institute of Medical Research , Sydney, NSW , Australia ; St Vincent's Clinical School and School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW , Australia.
  2. Schizophrenia Research Institute , Sydney, NSW , Australia ; Schizophrenia Research Laboratory, Neuroscience Research Australia , Sydney, NSW , Australia ; School of Psychiatry, University of New South Wales , Sydney, NSW , Australia.
  3. Garvan Institute of Medical Research , Sydney, NSW , Australia.

PMID: 25806019 PMCID: PMC4353253 DOI: 10.3389/fneur.2015.00045

Abstract

The human subependymal zone (SEZ) is debatably a source of newly born neurons throughout life and neurogenesis is a multi-step process requiring distinct transcripts during cell proliferation and early neuronal maturation, along with orchestrated changes in gene expression during cell state/fate transitions. Furthermore, it is becoming increasingly clear that the majority of our genome that results in production of non-protein-coding RNAs plays vital roles in the evolution, development, adaptation, and region-specific function of the human brain. We predicted that some transcripts expressed in the SEZ may be unique to this specialized brain region, and that a comprehensive transcriptomic analysis of this region would aid in defining expression changes during neuronal birth and growth in adult humans. Here, we used deep RNA sequencing of human SEZ tissue during adulthood and aging to characterize the transcriptional landscape with a particular emphasis on long non-coding RNAs (lncRNAs). The data show predicted age-related changes in mRNAs encoding proliferation, progenitor, and inflammatory proteins as well as a unique subset of lncRNAs that are highly expressed in the human SEZ, many of which have unknown functions. Our results suggest the existence of robust proliferative and neuronal differentiation potential in the adult human SEZ and lay the foundation for understanding the involvement of lncRNAs in postnatal neurogenesis and potentially associated neurodevelopmental diseases that emerge after birth.

Keywords: aging; interneuron; long non-coding RNA; neurodevelopmental disease; neurogenesis; subependymal zone

References

  1. J Psychiatr Res. 2014 Jun;53:125-32 - PubMed
  2. Science. 2005 Sep 2;309(5740):1559-63 - PubMed
  3. J Neurosci. 2010 Jul 7;30(27):9127-39 - PubMed
  4. Cell Res. 2011 Nov;21(11):1534-50 - PubMed
  5. Dev Neurobiol. 2012 Jul;72(7):990-1005 - PubMed
  6. Neurochem Int. 2007 Jun;50(7-8):1028-41 - PubMed
  7. EMBO J. 2010 Sep 15;29(18):3082-93 - PubMed
  8. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  9. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  10. Neuron. 1999 Jun;23(2):257-71 - PubMed
  11. Nat Rev Neurosci. 2012 Jan 18;13(2):107-20 - PubMed
  12. Genome Res. 2012 Sep;22(9):1775-89 - PubMed
  13. Bioinformatics. 2011 Jan 1;27(1):130-1 - PubMed
  14. Dev Growth Differ. 2012 Jan;54(1):44-54 - PubMed
  15. Annu Rev Neurosci. 2002;25:409-32 - PubMed
  16. Brain. 2008 Oct;131(Pt 10):2564-78 - PubMed
  17. Nat Rev Neurosci. 2012 Jul 20;13(8):528-41 - PubMed
  18. Trends Genet. 2013 Aug;29(8):461-8 - PubMed
  19. Nature. 2002 Jun 6;417(6889):645-9 - PubMed
  20. Bioinformatics. 2009 May 1;25(9):1105-11 - PubMed
  21. J Neuroinflammation. 2012 Jul 23;9:179 - PubMed
  22. Neuron. 1998 Nov;21(5):1031-44 - PubMed
  23. Nature. 2014 Mar 27;507(7493):455-61 - PubMed
  24. Nat Biotechnol. 2010 May;28(5):511-5 - PubMed
  25. Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17031-6 - PubMed
  26. Nature. 2011 Aug 28;477(7364):295-300 - PubMed
  27. Science. 2007 Mar 2;315 (5816):1243-9 - PubMed
  28. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  29. Dev Biol. 2013 Apr 15;376(2):224-35 - PubMed
  30. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  31. Development. 2004 Aug;131(15):3545-57 - PubMed
  32. Cell. 2008 Oct 31;135(3):396-400 - PubMed
  33. PLoS Genet. 2013 Mar;9(3):e1003368 - PubMed
  34. Am J Psychiatry. 2010 Dec;167(12):1479-88 - PubMed
  35. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  36. Aust N Z J Psychiatry. 2010 Jan;44(1):59-70 - PubMed
  37. J Comp Neurol. 2000 Jul 31;423(3):359-72 - PubMed
  38. Science. 1994 May 20;264(5162):1145-8 - PubMed
  39. Genome Res. 2008 Sep;18(9):1433-45 - PubMed
  40. Nucleic Acids Res. 2014 Jan;42(Database issue):D98-103 - PubMed
  41. Sci Rep. 2013 Nov 19;3:3254 - PubMed
  42. J Neurosci. 2002 Jan 15;22(2):486-92 - PubMed
  43. Cell Mol Life Sci. 2011 May;68(10):1645-56 - PubMed
  44. Bioinformatics. 2012 Jun 1;28(11):1530-2 - PubMed
  45. BMC Neurosci. 2010 Feb 05;11:14 - PubMed
  46. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):716-21 - PubMed
  47. Mol Psychiatry. 2014 Apr;19(4):486-94 - PubMed
  48. PLoS One. 2011;6(9):e25194 - PubMed
  49. Nat Struct Mol Biol. 2013 Mar;20(3):300-7 - PubMed
  50. J Neurochem. 2011 Mar;116(6):947-56 - PubMed
  51. Bioessays. 2009 Jan;31(1):51-9 - PubMed
  52. Eur J Neurosci. 2005 Jan;21(1):1-14 - PubMed
  53. Neuron. 1999 Jun;23(2):247-56 - PubMed
  54. Mol Cell. 2013 Aug 8;51(3):349-59 - PubMed
  55. Cell Stem Cell. 2011 May 6;8(5):566-79 - PubMed
  56. EMBO J. 2012 Feb 1;31(3):522-33 - PubMed
  57. Nature. 2011 Sep 28;478(7369):382-6 - PubMed
  58. Nat Protoc. 2009;4(1):44-57 - PubMed
  59. Science. 2003 Dec 5;302(5651):1760-5 - PubMed
  60. Nat Neurosci. 2005 Aug;8(8):1059-68 - PubMed
  61. Bioinformatics. 2014 May 15;30(10):1471-2 - PubMed
  62. Nat Med. 1998 Nov;4(11):1313-7 - PubMed
  63. Schizophr Res. 2014 May;155(1-3):26-30 - PubMed
  64. Cell Death Dis. 2014 May 22;5:e1243 - PubMed
  65. Nature. 2001 Feb 15;409(6822):860-921 - PubMed

Publication Types

Grant support