Display options
Share it on

J Phys Chem B. 2015 Apr 30;119(17):5531-6. doi: 10.1021/jp513033j. Epub 2015 Apr 17.

Linkage Isomerization via Geminate Cage or Bimolecular Mechanisms: Time-Resolved Investigations of an Organometallic Photochrome.

The journal of physical chemistry. B

Kristy M DeWitt, Tung T To, Edwin J Heilweil, Theodore J Burkey

Affiliations

  1. †Radiation Physics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8443, United States.
  2. ‡Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152-3550, United States.

PMID: 25806597 DOI: 10.1021/jp513033j

Abstract

The extent of the photoinitiated linkage isomerization of dicarbonyl(3-cyanomethylpyridine-κN)(η(5)-methylcyclopentadienyl)manganese (4) to dicarbonyl(3-cyano-κN-methylpyridine)(η(5)-methylcyclopentadienyl)manganese (5) was examined by time-resolved infrared spectroscopy on picosecond to microsecond time scales in room temperature isooctane to determine the extent the isomerization occurs as a geminate cage rearrangement. We previously reported that a substantial part of the conversion between 4 and 5 must be a bimolecular reaction between a solvent coordinated dicarbonyl(η(5)-methylcyclopentadienyl)manganese (3) and uncoordinated 3-cyanomethylpyridine. For the purpose of designing a molecular device, it would be desirable for the photoisomerization to occur in a geminate cage reaction, because the faster the isomerization, the less opportunity for side reactions to occur. In this study, assignments of transients are identified by comparison with transients observed for model reactions. Within 100 μs after photolysis of 4 in isooctane, no 5 is observed. Instead, the solvent coordinated 3 is observed within 25 ps after irradiation. The formation of 5 is observed only in the presence of 9 mM 3-cyanomethylpyridine but not until 10-50 μs after irradiation of 4. Within the limits of detection, these results indicate the conversion of 4 to 5 occurs exclusively via a bimolecular reaction of 3-cyanomethylpyridine with solvent coordinated 3 and not a geminate cage reaction between 3-cyanomethylpyridine and the dicarbonyl(η(5)-methylcyclopentadienyl)manganese fragment.

Publication Types