Display options
Share it on

Clin Transl Med. 2015 Feb 26;4:9. doi: 10.1186/s40169-015-0050-9. eCollection 2015.

An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters.

Clinical and translational medicine

Rhea M May, Chelsea M Magin, Ethan E Mann, Michael C Drinker, John C Fraser, Christopher A Siedlecki, Anthony B Brennan, Shravanthi T Reddy

Affiliations

  1. Sharklet Technologies, Inc, 12635 E. Montview Blvd. Suite 155, Aurora, CO 80045, CO USA.
  2. Departments of Bioengineering and Surgery, Pennsylvania State University, Hershey, PA USA.
  3. Departments of Materials Science and Engineering and Biomedical Engineering University of Florida, Gainesville, FL 32611 USA.

PMID: 25852825 PMCID: PMC4385044 DOI: 10.1186/s40169-015-0050-9

Abstract

BACKGROUND: Catheter-related bloodstream infections (CRBSIs) and catheter-related thrombosis (CRT) are common complications of central venous catheters (CVC), which are used to monitor patient health and deliver medications. CVCs are subject to protein adsorption and platelet adhesion as well as colonization by the natural skin flora (i.e. Staphylococcus aureus and Staphylococcus epidermidis). Antimicrobial and antithrombotic drugs can prevent infections and thrombosis-related complications, but have associated resistance and safety risks. Surface topographies have shown promise in limiting platelet and bacterial adhesion, so it was hypothesized that an engineered Sharklet micropattern, inspired by shark-skin, may provide a combined approach as it has wide reaching anti-fouling capabilities. To assess the feasibility for this micropattern to improve CVC-related healthcare outcomes, bacterial colonization and platelet interactions were analyzed in vitro on a material common for vascular access devices.

METHODS: To evaluate bacterial inhibition after simulated vascular exposure, micropatterned thermoplastic polyurethane surfaces were preconditioned with blood proteins in vitro then subjected to a bacterial challenge for 1 and 18 h. Platelet adhesion was assessed with fluorescent microscopy after incubation of the surfaces with platelet-rich plasma (PRP) supplemented with calcium. Platelet activation was further assessed by monitoring fibrin formation with fluorescent microscopy after exposure of the surfaces to platelet-rich plasma (PRP) supplemented with calcium in a flow-cell. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times.

RESULTS: Blood and serum conditioned micropatterned surfaces reduced 18 h S. aureus and S. epidermidis colonization by 70% (p ≤ 0.05) and 71% (p < 0.01), respectively, when compared to preconditioned unpatterned controls. Additionally, platelet adhesion and fibrin sheath formation were reduced by 86% and 80% (p < 0.05), respectively, on the micropattern, when compared to controls.

CONCLUSIONS: The Sharklet micropattern, in a CVC-relevant thermoplastic polyurethane, significantly reduced bacterial colonization and relevant platelet interactions after simulated vascular exposure. These results suggest that the incorporation of the Sharklet micropattern on the surface of a CVC may inhibit the initial events that lead to CRBSI and CRT.

Keywords: Blood compatibility; CRBSI; CRT; Infection; Microtopography; Platelet activation; Sharklet

References

  1. Nat Chem Biol. 2008 Dec;4(12):742-50 - PubMed
  2. J Biomed Mater Res A. 2015 Jan;103(1):384-96 - PubMed
  3. Soft Matter. 2014 Apr 14;10(14):2365-71 - PubMed
  4. Br J Haematol. 2003 Mar;120(6):1073-8 - PubMed
  5. JAMA. 1994 Apr 6;271(13):1014-6 - PubMed
  6. JAMA. 1994 May 25;271(20):1598-601 - PubMed
  7. J Infect Dis. 1989 Nov;160(5):865-75 - PubMed
  8. J Infect Dis. 1988 Oct;158(4):693-701 - PubMed
  9. Crit Care Med. 1996 Sep;24(9):1482-9 - PubMed
  10. J Endourol. 2011 Sep;25(9):1547-52 - PubMed
  11. FEMS Microbiol Rev. 2003 Jun;27(2-3):341-53 - PubMed
  12. Interdiscip Perspect Infect Dis. 2014;2014:541340 - PubMed
  13. J Clin Microbiol. 2001 Jun;39(6):2294-7 - PubMed
  14. J Clin Microbiol. 1992 Sep;30(9):2246-55 - PubMed
  15. Langmuir. 2014 Apr 29;30(16):4633-41 - PubMed
  16. Chest. 1998 Jul;114(1):207-13 - PubMed
  17. Biointerphases. 2007 Jun;2(2):89-94 - PubMed
  18. Mayo Clin Proc. 2006 Sep;81(9):1159-71 - PubMed
  19. Infect Dis Clin North Am. 2011 Mar;25(1):77-102 - PubMed
  20. Colloids Surf B Biointerfaces. 2005 Aug;44(2-3):82-92 - PubMed
  21. J Clin Oncol. 2005 Jun 20;23(18):4006-8 - PubMed
  22. Int J Artif Organs. 2008 Sep;31(9):810-9 - PubMed
  23. Thromb Res. 2013 Nov;132(5):511-4 - PubMed
  24. Acta Biomater. 2012 Jan;8(1):72-81 - PubMed
  25. Can J Anaesth. 2008 Aug;55(8):532-41 - PubMed
  26. Biochem J. 1989 Oct 15;263(2):505-11 - PubMed
  27. Adv Colloid Interface Sci. 2012 Nov 1;179-182:142-9 - PubMed
  28. Hematol Oncol Clin North Am. 2005 Feb;19(1):183-202, vii - PubMed
  29. Infect Immun. 1991 Sep;59(9):3323-6 - PubMed
  30. Biofouling. 2006;22(1-2):11-21 - PubMed
  31. Biomaterials. 2004 Nov;25(26):5681-703 - PubMed
  32. Crit Care Med. 2002 Apr;30(4):908-12 - PubMed
  33. Vasa. 2012 Sep;41(5):319-32 - PubMed
  34. J Biomed Mater Res A. 2013 Mar;101(3):622-32 - PubMed
  35. Langmuir. 2013 Oct 22;29(42):13023-30 - PubMed
  36. Biomaterials. 1997 Dec;18(24):1573-83 - PubMed
  37. Antimicrob Resist Infect Control. 2012 Dec 03;1(1):40 - PubMed
  38. Colloids Surf B Biointerfaces. 2011 Jun 15;85(1):2-7 - PubMed
  39. Cardiovasc Res. 2003 Oct 15;60(1):26-39 - PubMed
  40. Langmuir. 2009 Nov 17;25(22):12982-9 - PubMed
  41. J Clin Oncol. 2005 Apr 20;23(12):2655-60 - PubMed
  42. Biomaterials. 2013 Nov;34(33):8018-29 - PubMed
  43. Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):275-81 - PubMed
  44. Health Technol Assess. 2008 Apr;12 (12 ):iii-iv, xi-xii, 1-154 - PubMed
  45. Am J Pathol. 1971 Nov;65(2):381-97 - PubMed
  46. Chest. 2011 Jul;140(1):48-53 - PubMed
  47. Biomaterials. 2010 Mar;31(7):1533-45 - PubMed
  48. Pediatr Crit Care Med. 2013 Mar;14(3):306-9 - PubMed
  49. Infect Control Hosp Epidemiol. 2002 Dec;23(12):759-69 - PubMed
  50. Clin Transl Med. 2014 Apr 16;3:8 - PubMed
  51. Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):335-40 - PubMed
  52. J AOAC Int. 2013 Sep-Oct;96(5):1138-51 - PubMed
  53. Biomaterials. 2013 Nov;34(34):8533-54 - PubMed
  54. Appl Environ Microbiol. 2013 Apr;79(8):2703-12 - PubMed
  55. J Biomed Mater Res A. 2006 Mar 1;76(3):561-70 - PubMed
  56. Langmuir. 2008 May 6;24(9):4931-7 - PubMed
  57. Laryngoscope. 2008 May;118(5):867-70 - PubMed
  58. Biofouling. 2007;23(1-2):55-62 - PubMed
  59. J Thromb Haemost. 2003 Jul;1(7):1471-8 - PubMed
  60. Crit Care Med. 2006 May;34(5):1450-5 - PubMed

Publication Types

Grant support