Display options
Share it on

EJNMMI Res. 2015 Jan 28;5:1. doi: 10.1186/s13550-014-0078-7. eCollection 2015.

Transcriptional response in normal mouse tissues after i.v. (211)At administration - response related to absorbed dose, dose rate, and time.

EJNMMI research

Britta Langen, Nils Rudqvist, Toshima Z Parris, Emil Schüler, Johan Spetz, Khalil Helou, Eva Forssell-Aronsson

Affiliations

  1. Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden ; Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
  2. Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden.
  3. Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden.

PMID: 25853007 PMCID: PMC4384707 DOI: 10.1186/s13550-014-0078-7

Abstract

BACKGROUND: In cancer radiotherapy, knowledge of normal tissue responses and toxicity risks is essential in order to deliver the highest possible absorbed dose to the tumor while maintaining normal tissue exposure at non-critical levels. However, few studies have investigated normal tissue responses in vivo after (211)At administration. In order to identify molecular biomarkers of ionizing radiation exposure, we investigated genome-wide transcriptional responses to (very) low mean absorbed doses from (211)At in normal mouse tissues.

METHODS: Female BALB/c nude mice were intravenously injected with 1.7 kBq (211)At and killed after 1 h, 6 h, or 7 days or injected with 105 or 7.5 kBq and killed after 1 and 6 h, respectively. Controls were mock-treated. Total RNA was extracted from tissue samples of kidney cortex and medulla, liver, lungs, and spleen and subjected to microarray analysis. Enriched biological processes were categorized after cellular function based on Gene Ontology terms.

RESULTS: Responses were tissue-specific with regard to the number of significantly regulated transcripts and associated cellular function. Dose rate effects on transcript regulation were observed with both direct and inverse trends. In several tissues, Angptl4, Per1 and Per2, and Tsc22d3 showed consistent transcript regulation at all exposure conditions.

CONCLUSIONS: This study demonstrated tissue-specific transcriptional responses and distinct dose rate effects after (211)At administration. Transcript regulation of individual genes, as well as cellular responses inferred from enriched transcript data, may serve as biomarkers in vivo. These findings expand the knowledge base on normal tissue responses and may help to evaluate and limit side effects of radionuclide therapy.

Keywords: Astatine-211; Biomarker; Ionizing radiation; Normal tissue response; Radionuclide therapy

References

  1. Blood. 2001 Aug 1;98(3):743-53 - PubMed
  2. Radiat Res. 1998 Feb;149(2):155-62 - PubMed
  3. Cancer Res. 2003 May 15;63(10):2361-3 - PubMed
  4. J Nucl Med. 2013 Jun;54(6):990-8 - PubMed
  5. Cold Spring Harb Symp Quant Biol. 2007;72:459-64 - PubMed
  6. J Nucl Med. 2009 Jul;50(7):1153-60 - PubMed
  7. EJNMMI Res. 2011 Nov 28;1(1):29 - PubMed
  8. Radiat Res. 2011 Apr;175(4):493-500 - PubMed
  9. Bioinformatics. 2015 Mar 1;31(5):728-35 - PubMed
  10. Genome Res. 1997 Apr;7(4):353-8 - PubMed
  11. Cancer Lett. 2014 Jan 1;342(1):9-18 - PubMed
  12. Nucl Med Biol. 2015 Mar;42(3):263-8 - PubMed
  13. Nature. 2003 Jan 30;421(6922):499-506 - PubMed
  14. Nucl Med Biol. 2001 Jan;28(1):41-50 - PubMed
  15. J Clin Endocrinol Metab. 1954 Oct;14(10):1161-78 - PubMed
  16. Radiat Prot Dosimetry. 2003;104(4):347-55 - PubMed
  17. J Nucl Med. 2009 Mar;50(3):477-84 - PubMed
  18. EJNMMI Res. 2012 Jun 09;2(1):29 - PubMed
  19. Cancer Res. 1990 Jun 15;50(12):3514-20 - PubMed
  20. Int J Clin Exp Pathol. 2014 Jan 15;7(2):619-30 - PubMed
  21. Cancer Biother Radiopharm. 2013 Nov;28(9):657-64 - PubMed
  22. Cancer Res. 2011 Nov 15;71(22):7010-20 - PubMed
  23. Clin Cancer Res. 2010 Aug 1;16(15):3860-74 - PubMed
  24. Int J Radiat Biol. 1996 May;69(5):555-63 - PubMed
  25. Cancer Res. 2001 Mar 1;61(5):1820-4 - PubMed
  26. J Nucl Med. 2009 Jul;50(7):1161-7 - PubMed
  27. Inflamm Res. 2014 Jan;63(1):13-22 - PubMed
  28. Cancer Biother Radiopharm. 2006 Dec;21(6):591-600 - PubMed
  29. Eur J Cancer. 1997 Jan;33(1):144-52 - PubMed
  30. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Aug;50(2):353-61 - PubMed
  31. Cell. 2002 Oct 4;111(1):41-50 - PubMed
  32. J Biomed Sci. 2008 Sep;15(5):557-63 - PubMed
  33. Proc Soc Exp Biol Med. 1954 Jun;86(2):366-9 - PubMed
  34. Appl Radiat Isot. 2001 Aug;55(2):157-60 - PubMed
  35. Acta Oncol. 1996;35(3):373-9 - PubMed
  36. Int J Radiat Biol. 1997 Nov;72(5):531-6 - PubMed
  37. Int J Radiat Biol. 1990 Nov;58(5):745-58 - PubMed
  38. Oncogene. 2001 Jun 21;20(28):3609-19 - PubMed
  39. Cell. 2008 Apr 4;133(1):66-77 - PubMed
  40. Clin Cancer Res. 2006 Jun 15;12(12):3823-30 - PubMed
  41. Mutat Res. 2012 Oct-Dec;751(2):258-86 - PubMed
  42. Cancer Metastasis Rev. 2004 Aug-Dec;23(3-4):259-68 - PubMed
  43. Radiat Res. 1998 Jan;149(1):98-102 - PubMed
  44. Int J Radiat Biol. 1996 Oct;70(4):447-58 - PubMed
  45. J Dermatol. 2008 Jan;35(1):6-17 - PubMed
  46. Int J Rad Appl Instrum A. 1986;37(8):789-98 - PubMed
  47. Cancer Res. 2000 Aug 15;60(16):4342-5 - PubMed
  48. Acta Oncol. 2000;39(6):741-5 - PubMed
  49. Mol Cancer Res. 2012 Jun;10(6):677-88 - PubMed
  50. EJNMMI Res. 2012 Jun 14;2(1):32 - PubMed
  51. Nat Genet. 2000 May;25(1):25-9 - PubMed
  52. Oncogene. 2013 Oct 31;32(44):5241-52 - PubMed

Publication Types