Display options
Share it on

Nat Commun. 2015 Mar 26;6:6668. doi: 10.1038/ncomms7668.

Ternary metal fluorides as high-energy cathodes with low cycling hysteresis.

Nature communications

Feng Wang, Sung-Wook Kim, Dong-Hwa Seo, Kisuk Kang, Liping Wang, Dong Su, John J Vajo, John Wang, Jason Graetz

Affiliations

  1. Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
  2. 1] Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-742, Republic of Korea [2] Center for Nanoparticle Research, Institute for Basic Science, Seoul National University, Seoul 151-742, Republic of Korea.
  3. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
  4. Sensors and Materials Laboratory, HRL Laboratories, LLC, Malibu, California 90265, USA.
  5. 1] Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973, USA [2] Sensors and Materials Laboratory, HRL Laboratories, LLC, Malibu, California 90265, USA.

PMID: 25808876 PMCID: PMC4389236 DOI: 10.1038/ncomms7668

Abstract

Transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3-4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M(1)yM(2)(1-y)F(x): M(1), M(2) = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid-solution Cu(y)Fe(1-y)F(2), reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. Although the reversible capacity of Cu conversion fades rapidly, likely due to Cu(+) dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.

References

  1. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  2. Adv Mater. 2010 Dec 7;22(46):5260-4 - PubMed
  3. J Am Chem Soc. 2011 Nov 23;133(46):18828-36 - PubMed
  4. Nano Lett. 2012 Nov 14;12(11):6030-7 - PubMed
  5. Nat Mater. 2005 May;4(5):366-77 - PubMed
  6. Adv Mater. 2010 Sep 15;22(35):E170-92 - PubMed
  7. J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41 - PubMed
  8. Science. 2006 Feb 17;311(5763):977-80 - PubMed
  9. Science. 2013 May 24;340(6135):964-8 - PubMed
  10. Nature. 2001 Nov 15;414(6861):359-67 - PubMed
  11. Science. 2011 Nov 18;334(6058):928-35 - PubMed
  12. ACS Appl Mater Interfaces. 2014 Jul 23;6(14):10858-69 - PubMed
  13. Nature. 2000 Sep 28;407(6803):496-9 - PubMed
  14. J Am Chem Soc. 2012 May 16;134(19):8205-11 - PubMed
  15. Nat Commun. 2012;3:1201 - PubMed
  16. J Phys Condens Matter. 2011 Jul 13;23(27):276007 - PubMed

Publication Types